
()

)

j

-- - - ---

TRS--BO® MODEL I/III

RSCOBOL
SYSTEM
USERJS GUIDE

General lnformc;:1tion1

Compiler Use, Start-Up,
Sc;1mple Programs, and
Sample Session

~ TRS-BD

TM

SOFTWARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK i A DIVISION OF TANDY CORP.

Important Note to
Model Ill Users

From time to time. Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS. read the following before making
any modifications to your existing software packages (applications. lan
guages. or system utilities):

• Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

• Before converting a Radio Shack supplied Model I software package to a
Model Ill format, check_to see if Radio Shack provides a Model Ill version
of the package. If so, you should obtain a copy of that version.

• If you·re using several different software packages. press the RESET but
ton whenever you change software.

Thank-You!

lad1e lhaeli
~ A Division of Tandy Corporation ,

8759106

Important Note for
Model I/III

RSCOBOL Users
The object modules (described on page 32 of the Use section) are password
protected and cannot be copied (with COPY) from your system diskette. To
transfer these modules to another diskette, use BACKUP.

When you assign a program-name to a COBOL file (refer to page 29 of the
RSCOBOL section of this manual), you must use standard TASDOS syntax
for the program-name. See the File Specification section of your Model Ill
owner's manual for specific details.

Thank-You!

1tat11elhaeli
i A Division of Tandy Corporation

8759117-581

Important Notes for
F:ISCOBOL Users Cat. no. 26-2203

=or your conve[lience, this package includes diskettes for both Model I and Model III owners. This
nanual describes conversion procedures for Model III owners. These are no longer required.

fhese procedures are explained in the section titled Converting RSCOBOL to Model III, which is
n Appendix C. Please disregard them.

~II Radio Shack software packages are designed for use under the version of the operating system
Jnder which the package is released. Therefore do not use this package under prior versions of
rnsoos. When using any other software package make sure you press the (RESET) button to insure
:hat the appropriate version of TRsoos is loaded before using the software package.

In the RSCOBOL section, you will find some references to Model II. These references also apply to
your Model I or Ill.

Thank-You!

Radio lhaeli
J. A Division of Tandy Corporation

8759104-381

-------------TRS-BO@) ____________ _

Overview of the Model I/III COBOL Documentation Package.

This binder contains the information you need to use the Radio
Shack COBOL system. It assumes you are familiar with the
general operation of the Computer, including use of the TRSDOS
operating system. The COBOL package is provided on ewo Model I
diskettes, the Development diskette and the Runtime diskette.
Model III users will have to use the CONVERT utility to copy the
COBOL package to Model III diskettes.

The COBOL system requires a minimal system of 48K RAM and two
diskette drives.

The package includes three manuals.

System User's Guide

Provides general information, start-up procedures, compiler
commands, creation and use of a minimal-system runtime diskette,
sample programs, and a ~ample session. Also included is a
sample session and a description of the conversion procedure for
Model III users.

CEDIT User's Guide

Describes how to create and edit COBOL source files, using the
COBOL editor CEDIT, which is supplied on the Development
diskette.

RSCOBOL Language Reference Manual

A complete description of the Radio Shack version of the COBOL
programming language. Newcomers to COBOL should consult a
standard COBOL textbook for tutorial material.

-----------llad1elllaeli--------------

TRS-8O Mod~l I/III

COBOL USER'S GUIDE

<RS/COBOL 1.3)

December, 1980

PREFACE

This document contains the information required to compile, run
and debug COBOL language programs on the Radio Shack TRS-80 Model
I/III Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-80 Model I or Model III
Microcomputer, and the TRSDOS Operating System. The reader is
specifically referred to the following publications:

TRS-80 Model I/III COBOL Language Manual
TRS-80 Model I Operation Manual
TRS-80 Model I Disk Operating System Reference Manual
TRS-80 Model III Disk Operating System Reference Manual

This guide is organized such that each chapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
COBOL system.

PROPRIETARY RIGHTS NOTICE

TRS-80 Model I/III COBOL <RSCOBOL) is a proprietary product of:

Ryan-McFarland Corporation
Software Products Group

licensed to:
Tandy Corporation
One Tandy Center

Fort Worth, Texas 76102
(817) 390-3583

The software described in this document is furnished to the user
under a license for use on a single computer system and may be
copied (with inclusion of the copyright notice) only in accordance
with the terms of such license.

Copyright 1980 by Ryan-McFarland Corporation. All rights
reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Tandy
Corporation.

- i -

TABLE OF CONTENTS

Section

CHAPTER 1 THE COBOL COMPILER
1. 1 Compiler Overview
1. 2 Device Assignments
1. 3 Executing the Compiler

1. 3. 1 Comp i l e-r Source Input
1. 3. 2 Compiler Options
1. 3. 3 Compiler Messages
1.3.4 Examples

1. 4 The Program Listing
1. 4. 1 Listing Diagnostics
1. 4. 2 Diagnostic Messages

CHAPTER 2 THE COBOL RUNTIME
2. 1 Runtime Overview
2. 2 Device Assignments
2. 3 Executing the Compiled Program

2. 3. 1 Runtime Options
2. 3. 2 Runtime Messages
2. 3. 3 Examples

2. 4 Runtime Diagnostics
2. 5 File System Considerations

2. 5. 1 COBOL Seq_uential Files
2. 5. 2 COBOL Relative Files
2. 5. 3 COBOL Indexed Files
2. 5.4 COBOL Label Processing

2. 6 Runtime Memory Usage

INTERACTIVE DEBUG CHAPTER 3
3. 1
3.2

Debug Overview
User Interaction and Display

3. 3

CHAPTER
4. 1
4.2
4. 3
4. 4

Debug Commands

4 SYSTEM CONSIDERATIONS
The ACCEPT and DISPLAY Statements
The CALL Sta,ement
The COPY Statement
The WRITE ... ADVANCING ZERO ... Statement

Page

1
1
1
2
3
3
5
7
8
8
9

15
15
15
16
17
17
18
19
23
23
24
24
25
25

26
26
26
26

28
28
29
30
31

CHAPTER 5 INSTALLATION PROCEDURES 32

APPENDIX A SAMPLE PROGRAMS 33

APPENDIX B SAMPLE SESSION 34

'
APPENDIX C CONVERTING RSCOBOL TO MODEL III 35

MODEL I/III COBOL User's Guide - ii - (RSCOBOL 1.3)

CHAPTER 1

THE COBOL COMPILER

1. 1 Compiler Overview

The COBOL Compiler
III Microcomputer
appropriate TRSDOS
Model III - version

operates on a 48K byte TRS-8O Model I or Model
with at least two disk drives under the
Operating System. (Model I - version 2.3,

1. 1).

Once executed, the Compiler makes a single pass on the source
program, generating obJect and listing files c:oncurrently. Upon
completion it reports compilation results on the display and
returns control to TRSDOS.

Compilation always proceeds to the end of the program, regardless
of the number of source errors found.

A listing of the program is generated showing the original COBOL
source statements, error information, data allocation, Interactive
Debug information and, optionally, a Cross Reference of all
program labels and data items. This listing can be directed to
the Console, the Printer and/or a disk file.

The generated obJect file is in a form ready for immediate
execution by the COBOL Runtime. ObJect code is produced such that
an attempt to execute an erroneous statement wil1 terminate
execution with an appropriate error message.

1.2 Device Assignments

All communication between the Compiler and the User is through the
system console.

During operation, the Compiler will re~uire one or more of the
following devices:

Display & Keyboard compiler command input & compiler messages

Disk

Disk

Disk

Disk

Display

Printer

source input file

listing file (optional)

obJect file (optional)

COPY input file (optional>

listing display (optional)

listing print (optional)

MODEL I/III COBOL User's Guide - 1 - (RSCOBOL 1.3)

1.3 Executing the Compiler

To compile a COBOL source program, issue the following command to'
TRSDOS:

RSCOBOL filespec (options> comment

where:

filespec

options

is the file specification of the COBOL source file to be
compiled of the form:

filename/ext. password:d

'filename' is required.

'/ext' is an optional name-extension. When omitted, the
default '/CBL' is used.

'.password' is an optional pass111ord. .Note: If the file
111as created with a nonb lank password, '. password'
becomes a required field.

': d' is an optional drive specification. When omitted,
the system does an automatic search, starting with drive
0.

allows the user to specifv compiler and/or file options.
Each option must be specified as shown belo111, separated
by spaces. The left and right parenthesis are required
if anv comments are present.

When no options are
automaticallv generate
output.

specified, the
an obJect file

compiler will
but no listing

MODEL I/III COBOL User's Quide - 2 - <RSCOBOL 1.3)

1.3. l Compiler Source Input

The Compiler expects the source input to
containing logical records of ASCII text.
can be either of te.10 forms; 'byte-stream' or

be a se~uential file,
These logical records
'fixed":

'byte-stream' records consist of a string of ASCII
characters, terminated bv a carriage-return character. This
format is tvpicallv stored on the disk as one byte records
<LRL=l>, and is the format created by the standard TRSDOS
editor (s).

'fixed' records consist of 80 ASCII characters each <LRL=SO),
and do not contain carriage-return or other special
characters.

1.3.2 Compiler Options

D

E

'D' instructs the compiler to compile all COBOL "Debug"
source lines, identified by a "D" in column 7. This
alloe.,s the user selective compilation of COBOL source
statements.

This option has no relationship to the COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.

The default is to treat such lines as comments.

'E' instructs the compiler to generate an 'Error Only'
listing instead of a full listing. This option is
effective only e.,hen a listing has been specified <L, P
and/or T options).

The listing
information,
appropriate
information.

generated e.,ill contain
all source lines in

undermarks and messages,

the page heading
error with their

plus all summary

The default is not to generate an error listing.

MODEL I/III COBOL User's Quide - 3 - <RSCOBOL 1.3>

L L=d

0 0=d 0=N

p

T

X

'L' indicates that the compiler listing is to be written
to a disk file with the name or the source file and a
filename-extension of '/LST'. The first available disk 1

is used.

Specifying a drive number <L=d) indicates that the
listing file is to be written to disk 'd'.

LST files may be displayed using the standard TRSD0S
LIST and PRINT utilities.

The default is not to generate a listing file.

'0' indictes that the Compiler obJect output is to be
written to a disk file with the name of the source file
and a filename-extension of '/COB'. The first available
disk is used.

Specifying a drive number (0=d) indicates that the
obJect file is to be.written to disk 'd'. When omitted
the first available disk is used.

'0=N' indicates that no obJect file is to be generated.

The default is to generate an obJect file on the first
available disk.

'P' indicates that the listing is to be printed on the
printer.

The default is not to print the listing.

'T' indicates the listing is to be displayed on the
system display.

The default is not to display the listing.

'X' indicates a cross-reference of COBOL Procedure and
Data Division names is to be produced. This option is
effective only when a listing has been specified (L, P
or T options>.

The default is not to generate a cross-reference.

MODEL I/III COBOL User's Guide - 4 - <RSCOB0L 1.3>

1.3.3 Compiler Messages

Messages which report the compiler's status, or its ability to
complete the compilation process are reported on the system
display as they are detected.

TRS-80 Model I/III COBOL Compiler <RM/COBOL ver v.r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the compiler has been loaded and has begun to
compile the specified program. 'ver v.r' identifies the
version (v> and revision (r) level of the compiler.

COMPILATION COMPLETE: eeee ERRORS, wwww WARNINGS

Indicates that the compilation has been completed. The
values of 'eeee' and 'wwww' indicate the number of errors and
warnings, respectively, identified in the source program.
This message is repeated on the listing.

PARAMETER ERROR AT: vvvvvvvv

Indicates that an unrecoverable
command to execute the compiler.
the offending field.

error was detected on the
'vvvvvvvv' will identify

The user should reenter the command with the necessary
corrections.

COMPILATION CANCELLED

Compiler cancelled by user with BREAK key.

MODEL I/III COBOL User's Guide - 5 - <RSCOBOL 1.3)

COMPILER ERROR, NO: nnnn

An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition 1

which caused the error.

0001 Pointer overflow
The user program has exceeded internal compiler
pointers. Segment the program and recompile. If this
problem still exists, separate programs into main
program with multiple subroutines.

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile.

0010 Unable to locate or load a compiler overlay.
Install the RSCBLnvr program overlays as described in
the chapter on 'Ins ta l lati on Procedures. '

0020 Invalid TRSDOS

0030

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Required TRSDOS versions are:

Model I 2.3
Model III 1. 1

Invalid Source Record
The Compiler has encountered
record. Verify records are
either:

an invalid source input
ASCII text, formatted as

a) Variable length records <LRL=1> terminated with a
carriage return, or;

b) Fixed length 80 character records <LRL=BO> without
carriage return.

MODEL I/III COBOL User's Quide - 6 - <RSCOBOL 1.3)

1.3.4 Examples

RSCOBOL PAYROLL <PX>

locates and compiles the source program PAYROLL/CBL,
producing an obJect file (PAYROLL/COB> on the first available
disk and a listing, with cross-reference, on the printer.

RSCOBOL MORTQAQE/SRC: 1 <L=2 O=N>

compiles the source program MORTGAQE/SRC located on the disk
in drive 1, producing a listing file (MORTQAGE/LST) on the
disk in drive 2, and no obJect file.

MODEL I/III COBOL User's Guide - 7 - (RSCOBOL 1.3)

1.4 The Program Listing

The compiler
listings if
options).
listing is

outputs 'source', 'allocation', and 'summary'
a listing device or file is specified <L, P or T

When the 'X' option is specified, a 'cross-reference'
also produced.

The source listing includes a sequential line number, sentence
address, source image, and interspersed diagnostics.

The allocation listing includes the address, size, order, type,
and name of each identifier. The identifier names are indented to
show the record structure. (The order of an identifier is the
number of subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross-reference listing includes all identifier names in
alphabetical order, and the line number of each declaration,
source, and destination reference. The line number is surrounded
by slashes if the reference is a declaration; asteriks if the
reference is a possible modification. References to all
paragraphs and sections are included.

In all listings, numbers in decimal are represented as ddd ... d,
numbers in hexadecimal are represented as >dd ... d.

1. 4. 1 Listing Diagnostics

Source statements are checked for syntax and semantic errors as
they are scanned. Errors may cause interruption in scanning. In
this case, text is ignored until a recovery point is found and a
resume message is printed. Recovery points are chosen to minimize
the amount of unanalyzed text without producing irrelevant error
messages. In any case, the constructs at fault are undermarked
and error messages listed when the source line is printed. The
error message includes either E's or W's indicating error or
warning. For example:

004030 02 STOCK PIC 9(16>PPP COMPUTATIONAL.
$

***** 1)PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

Indicates a semantic number size error but

005040 02 PART PIC X<4BX<5> SYNC.
$ $

***** 1>SYNTAX *E
***** 2)SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

MODEL I/III COBOL User's Guide - 8 - (RSCOBOL 1. 3)

indicates a syntax error at the first undermark and a recover at
the second undermark.

The number preceding the error message is the undermark number,
counting from left to right. More than one message may refer to
the same undermark.

Global errors such as
control transfers are
of the source listing.

undefined paragraph names and illegal
listed with the program summary at the end

1.4.2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item.

The referenced identifier is not valid in a class
condition.

COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW

DATA TYPE

The data area (working-storage and literals) is larger
than 65535 bytes in length.

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

MODEL I/III COBOL User's Guide - 9 - CRSCOBOL 1.3)

DUPLICATE
Warning only. Multiple USE procedure declaTed for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD>.

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as referenced in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly ~ualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is,
incorrectly ~ualified, is defined in a record
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorrectlv ~ualified,
WORKINQ-STORAQE SECTION,
alphanumeric item.

Access or organization
undermarked statement.

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A non-elementary FILLER item is declared.

QROUP CLASH
USAQE or VALUE clause of group member conflicts with
same clause for group.

QROUP VALUE CLASH
Warning Only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAOE (other than USAOE IS DISPLAY>
clause.

MODEL I/III COBOL User's Ouide - 10 - <RSCOBOL 1.3)

IDENTIFIER
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM

INVALID ID

A PERFORM statement reference undefined or incorrectly
~ualified paragraph or the reference violates the rules
of segmentation.

The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REGUIRED

LABEL

LEVEL

LINKAGE

Relative key not declared for random access relative
file or record key not declared for indexed file.

Presence or absence of label record conflicts with
device standards.

Level-number given is invalid either intrinsically or
because of position within a group.

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context re~uires decimal integer.

MUST BE PROCEDURE
Context re~uires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MODEL I/III COBOL User's Guide - 11 - <RSCOBOL 1.3>

MUST BE SECTION

NESTING

Context re4uires procedure-name to be section.

Illegal nesting of
condition.

condition that is not an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced obJect of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW

RECORD KEY

The instruction area is larger than 32767 bytes in
length.

Record key declared for other than an indexed
organization file or a START statement KEV phrase
references a data item not aligned on the declared key's
leftmost byte.

RECORD REGUIRED

REDEFINES

Context re~uires record name.

REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL I/III COBOL User's Guide - 12 - <RSCOBOL 1.3)

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol
word is required. In the summary
about an ANSI COBOL reserved
implemented COBOL reserved word.

is given where a user
this is only a warning
word that is not an

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SIZE

SIZE ERROR

SUBSCRIPT

A VALUE IS clause appears in the FILE or LINKAGE
section.

Warning
segment
number
segment

only. Segment number
is not the same as the
of a new independent
number is used.

given in an independent
current segment or the
segment. The current

Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN clause given in conflict with usage and picture.

Warning only. Size of data referenced not correct for
context.

Declared
reference.

size of

Incorrect number of
reference.

record conflicts with present

subscripts or indices for •

MODEL I/III COBOL User's Guide - 13 - <RSCOBOL 1.3>

SYNC
Synchronized clause given for a group item

SYNTAX
Incorrect character or reserved word given for context.

UNDEFINED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REGUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a
CALL statement is different from that of the first
reference to the same program name.

VALUE ERROR

VALUE

Value given in VALUE IS required truncation of nonzero
digits.

VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with
variable size records.

MODEL I/III COBOL User's Guide - 14 - (RSCOBOL 1.3)

CHAPTER 2

THE COBOL RUNTIME

2. 1 Runtime Overview

The COBOL runtime operates on a 48K byte
III Microcomputer with at least two
appropriate TRSDOS Operating System.
Model III - version 1. 1).

TRS-8O Model I or Model
disk drives under the
<Model I - version 2.3,

Once invoked, the runtime loads and executes the compiled obJect
program, automatically loading any required segments.
Concurrently, it allocates memory for file buffers, and CALLed
COBOL and Assembly Language subprograms. Upon completion
appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments

All communication between Runtime and the User is through the
keyboard and display.

During operation the Runtime will require one or more of the
following devices:

Keyboard & Display runtime command input, Interactive Debug
command input, and runtime messages.

Keyboard & Display ACCEPT and DISPLAY, and Interactive Debug
display.

Printer PRINT output, if required.

NOTE: For PRINT output, the device name
"PRINTER" must be specified in the
SELECT statement; i. e,

SELECT filename, ASSIGN to PRINT, "PRINTER".

MODEL I/III COBOL User's Guide - 15 - <RSCOBOL 1.3>

2.3 Executing the Compiled Program

To execute a compiled COBOL obJect program, issue the following
command to TRSDOS:

RUNCOBOL filespec (options> comment

where:

filespec

options

is the specification of the compiled COBOL obJect file
to be executed of the form:

filename/ext. password:d

'filename' is required.

'/ext' is an optional name-extension. When omitted the
default '/COB' is used.

'. password' is an optional password. Note: If the file
was created with a nonb lank password, '. password'
becomes a required field.

':d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

allows the user to specify runtime options. Each option
must be specified as shown below, separated by spaces.
The left and right parenthesis are required if any
comments are present.

When no options are specified, the runtime will execute
the User's program without Interactive Debug, with all
switches set to 0, using all of available memory.

MODEL I/III COBOL User's Guide - 16 - <RSCOBOL 1.3)

2.3. 1 Runtime Options

D
'D' invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discussion, below, for
operating instructions.

The default is not to invoke Interactive Debug.

S=nn .. n

T=hhhh

'S' sets (or resets) the value of SWITCHES in the COBOL
program.

Each 'n' is a switch value, 0
numbered 1 to 8, left to right.
not be specified.

for off, 1 for on,
Trailing zeroes need

The default is to set all switches off (0).

'T' sets the top of available memory to a value
different from the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal
address 'hhhh'.

The default is to use all available memory.

2.3.2 Runtime Messages

Messages which report the runtime's status,
execute the COBOL program, are reported on the
they are detected.

or its ability to
system display as

TRS-80 Model I/III COBOL Runtime <RM/COBOL ver v.r>
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the runtjme has been loaded and has begun to
execute the specified program. 'ver v.r' identifies the
version <v> and revision Cr) level of the runtime.

MODEL I/III COBOL User's Guide - 17 - <RSCOBOL 1.3)

COBOL STOP RUN AT xxyyyy IN nnnnnn

This is the normal termination message of a program.

'xxyyyy' identifies the overlay <xx>
(yyyy) where the program terminated.
six characters of the PROGRAM-ID.

If Debug was invoked on the command
command may be used to cause Debug to
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE (Y/N)?

and statement address
'nnnnnn' are the first

line, an 'S' Debug
exit to the 0peratin9

This message indicates that a STOP 'literal' statement has
been encountered. 'xxyyyy' identifies the overlay (xx> and
statement address (yyyy> where the program terminated.
'nnnnnn' are the first six characters of the PROGRAM-ID.

Responding with a 'Y' will be the equivalent of a "pause"
statement, returning control to the next COBOL statement.

An 'N' response will cause all program files to be closed and
control will be returned to the operating system.

2.3.3 Examples

RUNCOBOL PAYROLL (9=1011)

locates, loads, and executes the compiled CQBOL program
PAYROLL/COB; and sets the value of SWITCHES 1, 3, and 4 'on',
all others 'off'.

RUNCOBOL MORTGAGE/TST:2 <D>

loads,the compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed
directly to Debug.

RUNTIME ERROR, NO: nnnn

an internal error has
execution. The value
which caused the error.

occurred which prevents continued
of 'nnnn' identifies the condition

0010 Unable to locate or load User Debug.
Install RSCBLDvr as described in the chapter on
'Installation Procedures'.

MODEL I/Ill COBOL User's Guide - 18 - (RSCOBOL 1.3>

0020 Invalid TRSDOS

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Re~uired TRSDOS versions are:

Model I - 1. 1
Model III - 2.3

2.4 Runtime Diagnostics

Diagnostic messages are display if an internal error occurs, or if
an I/0 error occurs that was not, or could not, be processed by an
appropriate USE procedure.

If Debug was invoked, Debug will be entered to allow examination
of program data values; otherwise, control will return to the
operating system.

COBOL error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where
'error' identifies the error condition. 'xxyyyy' identifies
the overlay (xx> and statement address (yyyy> where the
program terminated. 'nnnnnn' are the first six characters of
the PROGRAM-ID.

COBOL filename IO ERROR= cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I/0 condition, 'cc' has caused
the program to be aborted. 'xxyyyy' identifies the overlay
<xx) and statement address (yyyy> where the program
terminated. 'nnnnnn' are the first 6 characters of the
PROGRAM-ID.

The I/0
whether
indexed.

error 'cc' has a different meaning depending on
the file's organization is se~uential, relative or

Se~uential Files:

10 AT END.
The se~uential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

MODEL I/III COBOL User's Guide - 19 - <RSCOBOL 1.3)

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check
parity eT'ror, or transmission eT'T'OT'. May also indicate
attempted execution of an instruction not implemented in
the T'untime (REWRITE to a variable length recoT'd (VLR>
file; CLOSE REEL>. May also indicate that no moT'e space
is available on the disk.

34 PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundarv violation foT' a sequential file.

90 INVALID OPERATION.
An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the curT'ent open
mode or a REWRITE statement was not preceded by a
successful READ statement.

91 FILE NOT OPENED.
An attempt has been made to execute a DELETE, READ,
START, UNLOCK, WRITE, REWRITE or CLOSE statement on a
file which is not curT'ently open.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file which is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement foT'
a file closed with LOCK.

94 INVALID OPEN.

95

An attempt has been made to execute an OPEN statement for
a file with no external corT'espondence or a file having
inconsistent paT'ameters.

INVALID DEVICE.
been made to execute a CLOSE
execute an OPEN statement for a
to a device in conflict with
device. Valid combinations are:

An attempt has
statement, or to
which is assigned
externally assigned

Program Assignment

RANDOM

INPUT

OUTPUT

External Assignment

Disk

Disk

Disk

REEL
file
the

PRINT

INPUT-OUTPUT

Disk, line printeT'

Disk

MODEL I/III COBOL User's Guide - 20 - (RSCOBOL 1.3>

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externallv defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:

10 AT END.
The Format 1 READ statement was unsuccessfullv executed
as a result of an attempt to read a record when no next
logical record exists in the file.

21 SEGUENCE ERROR FOR A SEGUENTIALLV ACCESSED INDEXED FILE.

22

The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

DUPLICATE KEV VALUE.
An attempt has been
create a duplicate
duplicates.

made to
key on a

WRITE
file

a record that would
that does not allow

23 NO RECORD FOUND.
An attempt has been made to access a record, identified
by a kev, and that record does not exist in the file.

24 BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check,
parity error, or transmission error. May also indicate
that no more space is available on the disk.

90 INVALID OPERATION.
An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
read statement.

MODEL I/III COBOL User's Guide - 21 - <RSCOBOL 1.3>

91 FILE NOT OPENED.
An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a
file which is not in an open mode.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.

96

An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

UNDEFINED CURRENT RECORD POINTER.
An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

98 INVALID INDEX.
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

MODEL I/III COBOL User's Guide - 22 - <RSCOBOL 1.3)

2. 5 File System Considerations

Three types of files are supported by the COBOL Runtime:
seq_uential, relative (random), and indexed seq_uential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not typically need file information to execute COBOL
programs, he is referred to the Technical Information Section of
the Disk Operating System Reference Manual if further information
is desired.

Files are specified in the user's program SELECT statement
according to rules for the TRSDOS filespec, of the fprm:

where:

filename/ext. password:d

'filename' is req_uired.

'/ext' is an optional name-extension.

'. password' is an optional password. Note: If the file
was created with a nonblank password, '.password'
becomes a required field.

': d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

2. 5. 1 COBOL Sequential Files

COBOL seq,uential files consist of a seriallu accessible set of
'logical' records. These 'logical' records can exist on the disk
in either of two forms; 'variable' or 'fixed'.

'variable' records are identified in the File Description Entry
(FD> by specifuing "RECORD CONTAINS n TO m CHARACTERS". 'fixed'
records are identified bu specifuing RECORD CONTAINS n
CHARACTERS 11 • The user is cautioned to maintain a consistent
specification among all programs referring to the same file.

'variable' records contain a one bute length field at the
beginning of each record, followed by the actual data bytes. The
record length can vary from record to record. The second length
byte indicates the entire length of the record, including the
length byte. This can be any value from 2 to 255. This format is
stored on the disk as one byte records <LRL•l>.

'fixed' records are all of the same length and do not contain a
length bute. These files exist on the disk as standard TRSDOS
fixed length records of length (LRL•> 1 to 255 characters.

MODEL I/III COBOL User's Guide - 23 - <RSCOBOL 1.3)

2. 5.2 COBOL Relative Files

COBOL relative files are addressable randomly by 'logical' record
number. These files exist on the disk as fixed length records.

COBOL relative file 'logical' records are internally formatted,
and can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 253 bytes.

COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2. 5.3 COBOL Indexed Files

COBOL indexed files are created and maintained by the COBOL
runtime; implemented on the disk using TRSDOS fixed length records
of 256 bvtes.

COBOL indexed files are internally formatted, and can be created
and/or accessed onlv by COBOL programs. Each 'logical' record can
have a maximum length of 4096 bytes.

Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file; however, access time will be relatively constant throughout
the file.

COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:

NRECS • Int ((S + 33)/32) * R / 8

+ <R * 2) / Int (252/(Kn+B>>

+ <R * D> / 8

for each key

if duplicates

where:

R = maximum number of records desired
S = size of records (in bytes>
Kn= size of Kn (in bytes)
D = number of keys that allow duplicates

MODEL I/Ill COBOL User's Guide - 24 - <·RSCOBOL 1. 3)

2. 5.4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices.

TRSDOS provides automatic maintenance and validation of file
specifications by name and file type. No additional Label
processing is performed uni~ue to COBOL programs or files.

References to Label processing in the file description entry <FD>,
OPEN statement, and CLOSE statement, are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned, and any
applicable USE procedures will be executed.

2.6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
OOOOH to 05200H. The COBOL Runtime is loaded starting at 05200H.
The remaining memory is allocated as follows:

The main COBOL obJect program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays (SECTIONS
greater than 50) are included in this area.

Additional COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).

Assembly Language
address they were
'T=hhhh' option).

programs are loaded in high memory at the
assigned at 'DUMP' time (See Runtime

File buffers are dynamically allocated from high memory
downward, when OPENed, d•allocated (space recovered for use
by other files> when CLOSEd.

MODEL I/III COBOL User's Quide - 25 - <RSCOBOL 1.3>

3. 1 Debug Overview

CHAPTER 3

INTERACTIVE DEBUG

COBOL Interactive Debug is dynamically loaded when the user
specifies the 'D' option on the RUNCOBOL statement. Debug is then
given control and supervises the execution of the user's program.

Interactive Debug is loaded directly behind COBOL Runtime,
re~uiring approximately 1000 bytes.

3.2 User Interaction and Display

All Debug commands, and all resultant displays, are through the
system console.

Debug will re~uest command input by a prompt of the form

nnnnnn xxyyyy

where 'nnnnnn' are the first 6 characters of PROGRAM-ID, 'xx' is
the overlay number, and 'yyyy' is the hexadecimal location within
the specified overlay that will be executed next.

The values of 'xx' and 'yyyy' are taken directly from the Debug
column in the source listing for program 'nnnnnn'.

3.3 Debug Commands

All commands are specified by a single character, optionally
followed by one or more arguments. Optional fields are shown
surrounded by brackets; the brackets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted.

Invalid commands will be reJected with 'ERROR' displayed;
corrected input will be re~uested with a reprompt.

ACxxlyyyyC,nnnnnnJ Address stop.

Executes obJect instructions until overlay number 'xx' and
location 'yyyy' in program nnnnnn is to be executed. Debug
will regain control immediately prior to the execution of the
specified COBOL sentence, and re~uest further command input.

MODEL I/III COBOL User's Guide - 26 - (RSCOBOL 1.3)

S[nJ

If 'xx' is specified, 'yyyy' must be fully four hexadecimal
digits; if 'xx' is not specified, then leading zeros are not
required for 'YVY y '. If 'nnnnnn' is omitted, it is assumed
to be the first six characters of the program-id of the
currently executing program.

Single step sentence.

Execute 'n' COBOL sentences and return to the debug monitor.

The decimal argument 'n' specifies the number of COBOL
sentences to be executed before returning the Debug.

Dxxxx,yyyy[,ttttJ Dump by type.

G

E

Display the COBOL data item starting at hexadecimal location
'xxxx' of decimal length 'yyyy' and type 'tttt'. The values
for 'xxxx', 'yyyy', and 'tttt' are directly from the first
three columns of the allocation map. 'tttt' may be one of
the following:

NSU
NSS
NCU
NCS
NBS
NSE

NPS
ABS
ANS
GRP
ANSE
HEX (hexadecimal)

Dump Display has the format:

XX XX tttt dddd

where dddd = data in the specified format

Note: Only
displayed.

items in the currently executing program can be
This does not include linkage items.

Guit Execution.

Terminate Debug and force an immediate STOP RUN. Enter 'S'
to return to TRSDOS.

Exit

Exit the Debugger. Continue normal execution as if the
debugger had not been invoked on the command line.

MODEL I/III COBOL User's Guide - 27 - <RSCOBOL 1.3>

CHAPTER 4

SYSTEM CONSIDERATIONS

4. 1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data
between the keyboard and display and the User's program data area.
These statements allow the specification of general phrases which
may not be supported on every CRT.

Phrases which are not supported will compile correctly, but will
be ignored at runtime, causing no operation to take place. The
phrases which are not supported are:

ACCEPT HIGH, LOW, BLINK.

DISPLAY HIGH, LOW, BLINK, BEEP.

The ON EXCEPTION phrase of the ACCEPT statement is executed when
an invalid character is entered. Invalid characters include the
valid control characters (CNTR/n) below 020H, and non-ASCII
characters above and including OBOH.

When an invalid character is entered, its ASCI e~uivalent is
placed in the specified data-name and the ON EXCEPTION phrase is
executed. To determine which control character was entered,
define the data-name as USAGE COMPUTATIONAL-1 and compare for its
ASCII value.

Certain keys affect
including:

the operation of the ACCEPT statement,

<-

CLEAR

Erases the current character and moves the
cursor back one position.

Backspace to the beginning of the field,
erasing all characters in the field.

MODEL I/Ill COBOL User's Guide - 28 - (RSCOBOL 1.3>

4.2 The CALL Statement

When 'CALLed' the first time, COBOL and Assembly Language programs
are loaded by Runtime and entered at their initial location.
These 'called' programs remain in memory as long as the 'calling'
program is active; i.e., has not EXITed. Therefore, subsequent
CALLs from the 'calling' program will enter the 'called' program
directly, without requiring the 'called' program to be reloaded.

Once the 'calling' program has EXITed, all related 'called'
programs are discarded and will be reloaded if subsequently CALLed
by any program, including the previous 'calling' program.
Regardless of the sequence of 'called' and 'calling' programs, all
related files not explicitly closed are forced closed by the
interface upon EXIT from a given 'called' program.

COBOL programs that are to be CALLed must have been previously
compiled. The default filename-extension for a program name in a
CALL statement is '/COB'. A compiled COBOL program will have the
required extension. If the extension used is not '/COB', then it
must be specified in the CALL statement.

Assembly language programs that are to be CALLed must be in TRSDOS
LOAD command format as created by DUMP, with a filename extension
other than '/COB'. Assembly language programs must reside in high
memory, and the 'T=nnnn' option must be specified on the Runtime
command line to protect all memory required by the routine. The
user is responsible for ensuring that the assembler programs do
not interfere with each other.

and reused while the
If the COBOL 'calling'

the assembler program will

Assembly language programs are loaded
'calling' program resides in memory.
program is reloaded in memory, then
again be reloaded when it is called.

At entry time to an assembly-language routine register IX points
to the parameter list defined by the USING clause of the CALL
statement. The first word on the list contains the number of
bytes in the list. Subsequent words are addresses of the USING
arguments: e.g., if the length word specifies 6 bytes, there are 2
addresses following the length word. For example:

<IX)=> OW Argument List Length <n * 2 + 2>
DW USING Argument 1
OW USING Argument 2

DW USING Argument n

The format of each argument depends on its dataname PICTURE
definition; see the COBOL Language Manual, 'the PICTURE Clause'.

At exit time from an assembler routine,· register A may be set
non-zero to request a STOP RUN.

MODEL I/III COBOL User's Guide - 29 - (RSCOBOL 1.3>

4.3 The COPY Statement

The COPY statement provides the facility to copy (include) COBOL
source text from a user-specified file into the source program.
The complete file is copied into the program, without change, at
the location of the COPY statement.

The file to be copied is identified in the COBOL program by the
statement

COPY filename

or

COPY "filename/ext. password:d"

where:

'filename' is required.

'/ext' is an optional name-extension.
default '/CBL: is used.

When omitted the

'. password' is an optional password. Note: If the file
was created with a nonblank password, '. password'
becomes a required field.

':d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

A filename consisting only of letters and numbers (first character
must be letter) can be written without surrounding quotes. All
~ther forms must be surrounded by quotes.

Examples:

IDENTIFICATION DIVISION.
COPY STD ID.

ENVIRONMENT DIVISION.
COPY "STDENVIR/TST".

DATA DIVISION.
COPY "STDDATA/CBL: 1".

MODEL I/III COBOL User's Guide - 30 - (RSCOBOL 1.3)

4.4 The WRITE ... ADVANCING ZERO ... Statement

The seq_uential
positioning of
phrase.

WRITE statement allows control of the vertical
each line on the p~inted page with the ADVANCING

The . . . ADVANCING ZERO LINE<s> . . . phrase allows overprinting on
those print devices which support this feature. In all cases, the
phrase will compile correctly, but may operate as though
... ADVANCING 1 LINE ... was specified.

Standard Radio Shack Line Printers automatically advance after
each line is printed. Therefore, the ... ADVANCING ZERO LINES ...
phrase will execute as ADVANCING 1 LINE. The Compiler and
Runtime defaults to standard Radio Shack Line Printer operation.

MODEL I/III COBOL User's Guide - 31 - <RSCOBOL 1. 3)

CHAPTER 5

INSTALLATION PROCEDURES

Installation of RSCOBOL req_uires only that the obJect modules be
copied from the Development and Runtime factory release diskettes
to the appropriate user diskette. NOTE: 'nn' indicates the
current release level, i.e., T'elease 1. 3 will be '13'.

The modules req_uired to compile COBOL programs are:

RSCOBOL
RSCBL2nn/OBJ
RSCBL3nn/OBJ
RSCBL4nn/OBJ

The modules ~eq_uired to execute compiled COBOL programs are:

RUNCOBOL
RSCBLDnn/OBJ

As with all Development and Runtime factory release diskettes, the
user should save it in a secure location in case re-creation is
req_uired.

MODEL I/Ill COBOL User's Guide - 32 - <RSCOBOL 1.3)

APPENDIX A

SAMPLE PROQRAMS

MODEL I/III COBOL Us•r's Quide - 33 - <RSCOBOL 1.3)

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:15:44 PAGE 1
SOURCE FILE: CALCXMPL OPTION LIST: <P,T,0=2,X

LINE DEBUG PG/LN A ••• B •••••••••••••.••••.•••••••..•••.•.••.•.•.•••••••.••.••

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

IDENTIFICATION DIVISION.
PROGRAM-ID.

CALCULATOR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. RMC.
OBJECT-COMPUTER. RMC.

DATA DIVISION.
WORKING-STORAGE SECTION.
77
77
77
77
01

01

01
01

01

01

RESULT
OPERAND-1
OPERAND-2
WAIT-CHAR
GREETING.

PICTURE
PICTURE
PICTURE
PICTURE

S9(9)V9(9) VALUE ZERO.
S9(9>V9(9).
S9(9)V9(9).

x.

02 FILLER PICTURE X(18)
VALUE °CALCULATOR PROGRAM 0 •

OPERATION-MESSAGE.
02 FILLER PICTURE X(37)

VALUE °CHOOSE YOUR OPERATION(+,-,*,/)=•.
OPERATOR PICTURE X(2).
RESULT-MESSAGE.
02 FILLER PICTURE X(12)
. VALUE "RESULT IS= 11 •

02 RESULT-EDITED PICTURE -(9)9.9(9).
02 FILLER PIC X(4) VALUE SPACES.
02 OVERFLOW-FIELD PIC X(8) VALUE SPACES.
WAIT-MESSAGE.
02 FILLER PICTURE X<36)

VALUE 0 HIT NEWLINE TO CONTINUE (Q TO QUIT) ••
OPERAND-1-MESSAGE.
02 FILLER PICTURE X(12)

VALUE "OPERAND-1 = •.
OPERAND-2-MESSAGE.
02 FILLER PICTURE X(12)

VALUE "OPERAND-2 ="

34

•

' •

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:15:44 PAGE 2
SOURCE FILE: CALCXMPL OPTION LIST: <P ,T,0=2,X

E DEBUG PG/LN

8
39
40) 0000
41)0000
Lt;!)0000
43)0004
44)0004
45)000C
46)0014
47)001C
L•8 >0024
49)002C
50)0034
51 >003C
5~ L)003E
53)003E
54)0042
55)0046
56 >004A
57)0050
58)0050
59) 0054
60)005C
61)0064

2)0066
3)0066

64)006C
65
66)0078
67 >007C
68)0084
69)0088
70
71)0094
72)0098
73 >00A2
74 >00A2
75 >00A6
76 >00A6

•

A ••• e, ••••••••••• • ••

/ EJECT
PROCEDURE DIVISION.
RESIDENT SECTION 1.
NOT-START.

GO TO DISPLAY-GREETING.
RE-TRY.

DISPLAY OPERATION- MESSAGE, LINE 2, ERASE.
ACCEPT OPERATOR, POSITION 0, PROMPT, ECHO.
IF OPERATOR EQUAL "+"GOTO ADDITION.
IF OPERATOR EQUAL " "GO TO SUBTRACTION.
IF OPERATOR EQUAL "*"GOTO MULTIPLICATION.
IF OPERATOR EQUAL "/"GOTO DIVI-SION.
IF OPERATOR EQUAL "Q" GO TO END- RUN.
GO TO RE- TRY.

DISPLAY-RESULT.
MOVE RESULT TO RESULT-EDITED.
DISPLAY RESULT-MESSAGE.
MOVE ZERO TO RESULT.
MOVE SPACES TO OVERFLOW-FIELD.

WAIT-ENTRY.
DISPLAY WAIT - MESSAGE.
ACCEPT WAIT-CHAR, POSITION 0, PROMPT, ECHO.
IF WAIT-CHAR EQUAL "Q" GO TO END- RUN.
GO TO RE- TRY.

GET-OPERANDS.
DISPLAY OPERAND-1 - MESSAGE, LINE 4.
ACCEPT OPERAND-1, LINE 4, POSITION 13, SIZE 10,

PROMPT, CONVERT.
MOVE OPERAND- 1 TO RESULT-EDITED.
DISPLAY RESULT-EDITED, LINE 4, POSITION 13.
DISPLAY OPERAND-2- MESSAGE.
ACCEPT OPERAND-2 , LINE 5, POSITION 13, SIZE 10,

PROMPT, CONVERT.
MOVE OPERAND-2 TO RESULT-EDITED.
DISPLAY RESULT-EDITED, LINE 5, POSITION 13.

END-RUN.
EXIT PROGRAM.

STOP-RUN.
STOP RUN .

35

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:15:44 PAGE 3
SOURCE FILE: CALCXMPL OPTION LIST: <P,T,0=2,X

LINE DEBUG PG/LN

77
78>0100A8
79>0100A8
80>0100A8
81>0100AA
82
83)010088
84
85>0200A8
84)0200A8
87>02il8AB
88>0200AA
89
90>0200B8
91
92>0310A8
93)0300A8
94>0300A8
95>0300AA
96
97)030088
98
99)0400A8

100>0400A8
181)0480A8
102>0400AA
103
104>fl400BA
105
1fl6>8'00A8
107>05'2iA8
1,a>n•Ae
109>0,aeAc
U:0
111

A • •• B •• • • •• • ••• • •.

/ EJECT
OVERLAY-ADDITION SECTION 51.
ADDITION.

PERFORM GET-OPERANDS.
ADD OPERAND-1 OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE ·ovERFLow· TO OVERFLOW-FIELD.
GO TO DISPLAY~RESULT.

OVERLAY-SUBTRACTION SECT.JON 52.
SUBTRACTION.

PERFORM GET-OPERANDS.
SUBTRACT OPERAND~2 FROM OPERAND-1 GIVING RESULT

ON SIZE ERROffMOVE •ovERFLow• TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-MULTIPLICATION SECTION 53.
MULTIPLICATION. .

PERFORM GET-OPERANDS.
MULTIPLY OPERAND-! BY OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT~

OVERLAY-DIVISION SECTION 54.
DIVI-SION. • ..

PERFORM. GET~OPERANDS.
DIVIJ:>E OPERAl\lI).::..1 ev :OPERAND-2 GIVING RESULT ROUNDED

ON SIZE EftROR. ,MOVE 11 0V,E;AFLOW• TO OVERFLOW-FIELD.
GO TO t.>ISPLAY-RE$\JLT.

OVERLAY-DISPL.AY-GREETING SECTION 98.
DISPLAY-~REETING. . .

DISPLAY GREET1~6~
GO TO WAIT-ENTRY~

END PROGRAM.

36 •

TRS--80 Model I/III COBOL. <RM/COBOL. 1. 3A >
SOURCE FILE: CAL.CXMPL

DRESS SIZE DEBUG

>0004 19 NSS

>0018 19 NSS

>002C 19 NBS

>0040 1 ANS

>0042 18 GRP

)0(2)5L• 37 GRP

>007A 2 ANS

>007C 4Lt GRP
>121088 ~'20 NSE
>00A0 8 ANS

>00A8 36 GRP

>00CC 1 .-,
..:.. GRP

· ·1210D8 1 ·-:, ..:.. GRP

READ ONLY BYTE SIZE

READ/WRITE BYTE SIZE

OVERLAY SEGMENT BYTE

TOTAL BYTE SIZE -

fZI ERRORS

0 WARNINGS

•

=

OPTION

ORDER TYPE

0 NUMERIC SIGNED

0 NUMERIC SIGNED

0 NUMERIC SIGNED

0 ALPHANUMERIC

0 GROUP

0 GROUP

0 ALPHANUMERIC

f2) GROUP
0 NUMERIC EDITED
f2) ALPHANUMERIC

121 GROUP

0 GROUP

0 GROUP

>01BE

= >00EC

SIZE = }002E

>02D8

37

10/31/80 00: 15: 44 PAGE 4
LIST: <P,T,0=2,X

NAME

RESULT

OPERAND--1

OPERAND-2

WAIT-CHAR

GREETING

OPERATION-MESSAGE

OPERATOR

RESULT-MESSAGE
RESULT- EDITED
OVERFLOW-FIELD

WAIT-MESSAGE

OPERAND- 1-MESSAGE

OPERAND- 2-MESSAGE

TRS-80 Model I/III COBOL (RM/ COBOL 1. 3A > 10/31/80 00:15:44 PAGE 5
SOURCE FILE: CALCXMPL OPTION LIST: <P,T,0=2,X

CROSS REFERENCE /DECL/ *DEST* • ADDITION 0046 /0079/
DISPLAY-GREETING 0042 /0107/
DI SPLAY-.RESUL T /0052/ 0083 0090 0097 0104
DIVI-SION 0049 /0100/
END-RUN 0050 0060 /0073/
GET-OPERANDS /0062/ 0080 0087 0094 0101
GREETING /0016/ 0108
MULTIPLICATION 0048 /0093/
NOT-START /0041/
OPERAND-1 /0013/ *0064* 0066 0081 *0088* 0095 0102
OPERAND-1-MESSAGE /0032/ 0063
OPERAND-2 /0014/ *0069* 0071 0081 0088 *0095* 0102
OPERAND-2-MESSAGE /0035/ 0068
OPERATION-MESSAGE /0019/ 00.44
OPERATOR /0022/ *0045* 0046 0047 0048 0049 0050
OVERFLOW-FIELD /0028/ *0056* *0082* *0089* *0096* *0103*
OVERLAY-ADDITION /0078/
OVERLAY-DISPLAY-GREETING /0106/
OVERLAY-DIVISION /0099/
OVERLAY-MULTIPLICATION /0092/
OVERLAY-SUBTRACTION /0085/
RESIDENT /0040/
RESULT /0012/ 0053 *0055* *0081* *0088* *0095* *0102*
RESULT-EDITED /0026/ *0053* *0066* 0067 *0071* 0072 ,. RESULT-MESSAGE /0023/ 0054
RE-TRY /0043/ 0051 0061
STOP-RUN /0075/
SUBTRACTION 0047 /0086/
WAIT:-CHAR /0015/ *0059* 0060
WAIT-ENTRY /0057/ 0109
WAIT-MESSAGE /0029/ 0058

• 18

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 1
SOURCE FILE: ERRXMPL OPTION LIST: <T,P,0=2 ,X

1
2
3
4

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

27
28
29
30
31
:i2
33
34
:35
36
37
38
39
L•0
-4-1
L•2
43
L•4

****-!(·

L•S
L•b

DEBUG PG/LN

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
12)001L•0
000150
000160
000170
000180
000190
000200
000210
000220
12100230
000240
000250
000260
000270
000280
000290
000300
000310
000320
00!tB30
0003L•0
000:.350
0003612)
000370
000380
000390
000400
000L• 112)
000420
0 0 0 L• 3 0
000L•40

A ••• e, ••

IDENTIFICATION DIVISION.

PROGRAM-ID.
ERROR- EXAMPLES.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. RMC-MINI.
OBJECT-COMPUTER. RMC- MINI.
INPUT-OUTPUT SECTION.
FI LE-- CONTROL.

SELECT INPUT- FILE
ASSIGN TO INPUT, INPUT-NAME;
FILE STATUS IS INPUT- STATUS.

SELECT OUTPUT-FILE
ASSIGN TO OUTPUT, OUTPUT-NAME;
FILE STATUS IS OUTPUT-STATUS.

DATA DIVISION.
FILE SECTION.
FD INPUT--FILE

RECORD CONTAINS
LABEL RECORD IS

01 INPUT-REC.
05 FILLER

80 CHARACTERS
OMITTED.

PI C X < 06).
PI C X < 66). 05 I NPUT --FLD

05 AREA- FLDS
10 AREA--C
10 AREA·-A
10 AREA-·B

REDEFINES INPUT-FLD.
PIC X(01).

0~5 FILLER
FD OUTPUT-·FILE

RECORD CONTAINS
LABEL RECORD IS

01 OUTPUT- REC.
05 SE6l-FL..D
05 OUTPUT·-FLD
05 FILL.ER

PI C X (04).
PIC X(61).
PI C X < 08) .

80 CHARACTERS,
OMITTED.

PIC
PIC
PIC

9 (06).
X (66) .
X (08).

WORhING-STORAGE
Tl INPUT- NAME

SECTION .

77 OUTPUT- NAME
77 COUNT
77 LARGE-·VALUE
77 PI C-·ERROR

PIC
PIC
PIC
PIC
PIC

X < 28) •
X (28).
9(06) VALUE 0.
X(04) VALUE "ERROR".
-!(· < 05). *9.

$

1)
1)

PICTURE *E
SCAN RESUME *W

000450 77 INPUT-STATUS PIC X(04).
000460 77 OUTPUT- STATUS PIC X(02).
000470 01 SEQ-VALUE PIC 9(06).
0 0 0 L• 8 (2)

39

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 2
SOURCE FILE: ERRXMPL OPTION LIST: <T,P,0=2,X

LINE

49
50
51
5~, ..:..

53
54
55
56

57
58
59
60

61
62
63
64
65
66

67

68

69
70
71
72
73
74
75
76
77
78

79
80

81

DEBUG PG/LN A ••• B ••

)0000
)0000

>000A
>121010
)0014

I
000490 PROCEDURE DIVISION.
000500 0100.
000510 DISPLAY "COBOL PROGRAM SEQUENCER",
000520 LINE 1 POSITION 30 ERASE.
000530 DISPLAY SPACES LINE 2.
000540 DISPLAY "INPUT FILE: "
000550 MOVE' 3.5 TO OUTPUT-STATUS.

$ $

•
1) MOVE *E
2) SCAN RESUME *W

)0016 000560 ACCEPT INPUT-NAME POSITION 0 PROMPT ECHO.
>001E 000570 DISPLAY "OUTPUT FILE: "
>0022 000580 ACCEPT OUTPUT-NAME POSITION 0 PROMPT ECHO.
>002A 000590 OPEN INPUT INPUT-FILE.

$ $

1) INVALID ID
2) SCAN RESUME

>002C 000600
)0032 000610
)0036 000620
>003A 000630
)0040 000640 0200.
)0040 000650

*E
*W·~W*W*W

OPEN OUTPUT OUTPUT-FILE.
MOVE SPACES TO OUTPUT-REC.
MOVE 0 TO SEQ-VALUE.
DISPLAY "SEQUENCING BEGUN".

READ INPUT- FILE AT END

1) INVALID ID
000660

*E *E !E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E-ll·E *E-11-E-11•E *.
GO TO 0300.
$

1) SCAN RESUME *W
>0046 000670 PERFORM INPUT-CHECK.

$

1) MUST BE PROCEDURE *E
1) SCAN RESUME *W·~W*W*W*W*W*W*W

>0048 000680 ADD 10 TO SEQ-VALUE.
>004E 000690 MOVE SEQ-VALUE TO SEQ- FLD.
)0052 000700 MOVE INPUT-FLD TO OUTPUT- FLO.
>0056 000710 WRITE OUTPUT-REC.
)0062 000720 ADD 1 TO COUNT.
)0068 000730 GO TO 0200.
>006A 000740 0300.
>006A 000750 DISPLAY COUNT,

000760 " RECORDS SEQUENCED AND COPIED" POSITION 0.
>0074 000770 CLOSE INPUT-FILE, OUTPUT-FILE.

1) INVALID ID
2) SCAN RESUME

)0076 000780
>0078 000790

$ $

*E
*W

STOP RUN.
GO TO 0150.
$

1) MUST BE PROCEDURE *E
1) SCAN RESUME *W*

000800 END PROGRAM.

40

TRS-80 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 3
SOURCE FILE: ERRXMPL OPTION LIST: CT,P,0=2,X

>0000
>0006
)0006
>0006
>0007
)0008

SIZE

0
80
66
66

1
4

61

0
80

DEBUG ORDER TYPE

FILE
GRP 0 GROUP
ANS 0 ALPHANUMERIC
GRP 0 GROUP
ANS 0 ALPHANUMERIC
ANS 0 ALPHANUMERIC
ANS 0 ALPHANUMERIC

FILE
GRP 0 GROUP >0050

>0050
>0056

6 NSU 0 NUMERIC UNSIGNED
66 ANS 0 ALPHANUMERIC

28 ANS 0 ALPHANUMERIC

28 ANS 0 ALPHANUMERIC

>00A4

>00C0

>00DC 6 NSU 0 NUMERIC UNSIGNED

>00E2 4 ANS 12) ALPHANUMEtH C

>00E6 166 ANS 0 ALPHANUMERIC

4 ANS 0 ALPHANUMERIC

;! ANS 12) ALPHANUMERIC

>00F4 6 NSU 0 NUMERIC UNSIGNED

~EAD ONLY BYTE SIZE = >017E

~EAD/WRITE BYTE SIZE = >0138

>VERLAY SEGMENT BYTE SIZE = >0000

·oTAL BYTE SIZE= >0286

11 ERRORS

. 8 WARNINGS

41

NAME

INPUT-FILE
INPUT-REC

INPUT-FLD
AREA-·FLDS

AREA-C
AREA-·A
AREA-B

OUTPUT-FILE
OUTPUT-REC

SEQ-FLD
OUTPUT-FLO

INPUT-NAME

OUTPUT-NAME

COUNT

LARGE·-VALUE

PIC-ERROR

INPUT-STATUS

OUT PUT--ST A TUS

SEQ-VALUE

TRS-80 Hodel I/III COBOL (RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 4
SOURCE FILE: ERRXHPL OPTION LIST: <T,P,0=2,X

CROSS REFERENCE /DECL/ *DEST* • AREA-A /0029/
AREA-B /0030/
AREA-C /0028/
AREA-FLDS /0027/
COUNT /0042/ *0073* 0076
INPUT-CHECK 0068
INPUT-FILE /0012/ /0021/
INPUT-FLD /0026/ /0027/ 0071
INPUT-NAME *0013* /0040/ *0057*
INPUT-REC /0024/
INPUT-STATUS *0014* /0045/
LARGE-VALUE /0043/
OUTPUT-FILE /0015/ /0032/ 0061
OUTPUT-FLD /0037/ *0071*
OUTPUT-NAME *0016* /0041/ *0059*
OUTPUT-REC /0035/ *0062* *0072*
OUTPUT-STATUS *0017* /0046/
PIC-ERROR /0044/
SEQ-FLD /0036/ *0070*
SEQ-VALUE /0047/ *0063* *0069* 0070
0100 /0051/
0150 0080
0200 /0065/ 0074
0300 0067 /0075/

•

•
42

-----------TPIS-80~-----------

APPENDIX B

TRS-80 (R) MODEL I/III COBOL

SAMPLE SESSION

--------------TRS-110@)--------------
This section will take you through a compilation and execution
session, starting with a COBOL source file. We will use the
sample program, CALCXMPL/CBL, included with your COBOL
diskettes.

Note for Model III users: References will be made to the
separate Development and Runtime diskettes. Since Model III
diskettes will hold the complete system, your one diskette will
take the place of both the Development and Runtime diskettes.

STEP ONE. Create the source file.

In this session, we will use the sample program, CALCXMPL/CBL,
for the source file .. To create your own source file, follow the
instructions in the COBOL Editor (CEDIT) User's Guide ..

STEP TWO. Compile.

ltben compiling (RSCOBOL}, the COBOL Development diskette must be
in one of the drives. The program being compiled must also be
on a diskette, although not necessarily on the same one as
RSCOBOL. Our sample program is on both the Development a.nd the
Runtime diskettes. Also, there must be some free space on one
of the diskettes for the Compiler to write the compiled version
of your program.

With the COBOL Development diskette in one of the drives, type
under TRSOOS READY:

RSCOBOL CALCXMPL (T)
The T,option cc1uses a listing to be displayed at the console.
See section 1.3.2 i.n the COBOL USER'S GUIDE for other Compiler
options that are available.

This command creates an object file that can be executed by the
COBOL Runtime. This file will automatically be named
CALCXMPL/COB. Compiled programs are always written to disk with
the /COB ex.tension and will be written on the first available
diskette that has enough free space.

STEP THREE. Execute.

Model I users take out the Development diskette and replace it
with the Runtime diskette. Also be sure that the diskette

----------_,...,..,..,., __________ _
44

-------------TAS-80~------------
containing the newly compiled version of our sample program is
still on one of the drives.

Under TRSDOS READY, type:
RUNCOBOL CALCXMPL

The Runtime will execute the program CALCXMPL/COB. See Section
2.3.1 of the COBOL User's Guide for Runtime options.

---------------------....r-------------
• S

------------ ,rm-ao·~------------
C O N V E R S I O N S E S S l O N

FOR MODEL I I I Us· ER S

The diskettes you have contatn all t~ files needed t:o
compile and run COBOL frograms. However, these diskettes are
formatted for a Model and need to be converted to Model
IIIbefore you can use them. You will need one blank formatted
diskette for this procedure.

First, BACKUP your Model III system diskette to the blank
diskette. Take out your old Model III system disk and move the
newly created system disk to drive 0. Use the PURGE:0 (SYS)
command to delete all user files and all unnecessary system
files. CONVERT/CMD is the only system file that is essential
for the following procedure. You must have at least 130 free
granules of space on the new system diskette. Check the
directory to see how much space you do have.

Place the COBOL Development diskette in drive 1. Then use
the conversion utility as shown below.

TRSDOS Ready
CONVERT <ENTER>

The conversion utility will return with a prompt for Source
Drive (you will enter 1) and Destination Drive (you will enter
0). The password on both the Development and the Runtime
diskette is 'PASSWORD'.

The utility will convert the files to Model III format,
writing the converted version onto the diskette in drive 0.
Some of the files are passworded and the utility will prompt you
as in the ejtample shown below:

Enter Password for RSCOBOL/CMD?

Just press <ENTER> and the files will be converted and
transferred. Passwording does not prevent you in any way from
using them.

Five of the files are passworded and you will have to press
<ENTER> after every prompt. Four files are not passworded and
will automatically be converted and written on drive 0.

When the conversion is complete the utility displays a

________ __ ._.....,_....., __ ...,._
f6

______ ..., _______ TAIi-BO@)--------------

message telling you that it is done and then returns control to
TRSDOS.

Put the COBOL Runtime diskette in drive 1 and once again
use the CONVERT utility the same way as described above. There
are some passworded files on this diskette also, so you will
have to press <ENTER> when asked for the file passwords. Also,
some of the files are stored on both diskettes. When trying to
CONVERT the file the second time you will get the following
message:

CALCXMPL/COB Existing file. Use it (Y/N/Q)?

Type N, to use the previously converted file. The Y option
will Convert the file again unnecessarily and the Q option will
stop the CONVERT utility. To have more free space on the
diskette you may PURGE the CONVERT utility when the conversion
is complete, but it is not necessary. Label this new diskette
to show that it contains the complete COBOL package.

We suggest that you make backups of your new COBOL diskette
or keep the Model I version COBOL diskettes. This will give you
some security against losing your COBOL package.

You may want a diskette with just the minimal Runtime files
on it for running previously compiled programs. You will need a
blank formatted diskette. BACKUP your COBOL diskette onto this
new diskette. Then use the PURGE command to delete all but the
necessary Runtime files. The only files that you need to keep
on the new diskette are RUNCOBOL/CMD and RSCBLDnn/OBJ. (nn
refers to the version number.)

Remember that only programs that have been alr~ady compiled
using RSCOBOL can be used with this Runtime diskette.

47

)

)

)

TRS-BO® MODEL 1/111

RSCOBOL
CEDIT
USERJS GUIDE

Using CEDIT to Create
and Edit COBOL Source
Files.

mn,:m TRS-BD

' '

TM

SOFTWARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK MA DIVISION OF TANDY CORP.

TRS-80 (R) MODEL I/III COBOL

C E D I T

SOURCE PROGRAM EDITOR

USER'S GUIDE

(C) COPYRIGHT 1980, 1981 BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

----------ladlellllleli----------

TRS-80 MODEL I/III COBOL CEDIT

------------ ,1111-aa~------------

TABLE OF CONTENTS

INTRODUCTION • • • • • • • • • • • • • • • 3
SOURCE FILE FORMAT •••••••••••• 3
TO START THE EDITOR ••••••••••• 4
MODES OF OPERATION •••••••••••• 5
USING THE COMMAND MODE •••••••••• 6
SPECIAL KEYS IN THE COMMAND MODE ••••• 7
COMMANDS • • • • • • • • • • • • • • • • • 8

B (PRINT BOTTOM LINE) •••••••• 8
C (CHANGE) - • • • • • • • • • • • • • • 8
D (DELETE) • • • • • • • • • • • • • • 9
E (EDIT) • • • • • • • • • • • • • 9
F (FIND) ••••••••••••••• 10
H (HARD COPY) • • • • • • • • • • • • 11
I (INSERT) • • • • • • • • • • • • • • 11
L (LOAD FROM DISK) • • • • • • • • • • 12
M (MEMORY USED/FREE) ••••••••• 13
N (RENUMBER) • • • • • • • • • • • • • 13
P (PRIJ!l'f 'l'O DISPLAY) • • • • • • • • • 14
Q (QUIT SESSION) ••••••••••• 14
R (REPLACE) • • • • • • • • • • • 14
T (PRINT TOP LINE) •••••••••• 15
W (WRITE TO DISK) •••••••••• 15
X (CHANGE WITH PROMPTS) ••••••• 15

PAGE 2

TRS-80 MODEL I/III COBOL CEDIT ------------TA• -110@ ___________ _

INTRODUCTION

CEDIT lets you create and edit COBOL source files (the files
that are input to the COBOL Compiler).

Capabilities and features:

• Allows you to load in ("chain") multiple source files •
. Single-key abbreviations for many commands
• Powerful intra-line editing mode
• "M" command informs you of memory used/free at any time
• Global string find/change commands
• Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
COBOL compiler, as follows:

1. Files are fixed-length record (FLR) type, LRL•256, as
described in the TR.SOOS Reference Manual.

2. Each record in the file corresponds to one line of source
program. The first six data bytes in a record represent the
sequence number in ASCII form followed by the COBOL source code.
The carriage return (<BNTER>) used to terminate the line during
line insertion is stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

PAGE 3

TRS-80 MODEL I/III COBOL CEDIT

------------TAS•BO@)------------
TO START THE EDITOR

The editor program is included on the COBOL program diskette.
It has the file name CEDIT.

To use the editor, put the COBOL diskette into one of your
drives, and under TRSDOS READY, type:

CEDIT

The editor will start up with the prompt:

TRS-80 Cobol Editor Ver v.r
Copyright (c) 1980 Tandy Corp.

>

Where vis the version and r is the release number. The>
indicates you are in the command mode.

PAGE 4

TRS-80 MODEL I/III COBOL CEDIT -------------TPIS-80@ ____________ _
MODES OF OPERATION

There are three modes of operation:
• COMMAND, for entering the editor commands
• INSERT, for entering your text lines
• EDIT, for interactive editing of a line of text

COMMAND MODE
The> prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAR>.

INSERT MODE
You enter text one line at a time; a line consists of up to 255
characters, including the five-digit line number provided by
CEDIT. Line numbers can range from O to 65535,.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the COBOL Language Reference Manual for
column-field uses in COBOL source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAR>. See I Command for details.

EDIT MODE
There are many powerful edit sub-commands--identical in most
cases to those in Model: I and III BASIC's Edit Mode. There is
also a sub-edit insertion mode in which the keys you type are
inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

l>AGE 5

TRS-80 MODEL I/III COBOL CEDIT
-------------- ,·1119-ec,@ _____________ _

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"
All refer to the COBOL source program currently in RAM.

"current line"
The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"increment"
The value which is added to the current line number whenever the
editor needs to coinpute a new line nuinber. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line-reference"
lither an actual line number froin Oto 65535, or one of the
following special abbreviations:

Symbol • •
*

"line-range"

Meaning
Beginning line of text (lowest-numbered line)
Current line
Last line of text (highest-numbered line)

This can be either a single-line reference or a pair of
line-references separated by a colon:

Sainple
Command

Pl00
Pl00:300
Pi:.

"delimiter"

Meaning

Prints line 100 only
Prints all lines from 100 to 300
Prints all lines from beginning to current

A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

---------·--..... -••llllllli----------
PAGE 6

TRS-80 MODEL I/III COBOL CEDIT -------------TA~ac:,@ ____________ _
! ff i $ % & I ()*+I_• I:;<=)?

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use •••

'THIS" MARK'
/X'8000'/
&-------&

Marks this string •••

THIS" MARK
X'8000'

(seven blanks)

(The n-n symbol represents a blank space. It is used only where
necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the comntand you are entering, or to
abort a command which is currently being executed.

<right-arrow>
Advances the cursor to the next four-column boundary
(boundaries are at columns 4, 8, 12, .••)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

<up-arrow>
Pressing this~key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

shift<left-arrow>
Erases the command you are entering.

<@>
Pauses Hand P commands. Press any other key to continue.

---------------aaeti------------
PAGE 7

TRS-80 MODEL I/III COBOL CEDIT

------------TRS-80~-----------
COMMANDS

Note: Spaces are not significant in command lines. For example,
P 1 : 5

has the same effect as
Pl:5

The P command is explained later on.

B

Displays the bottom line (last line in the text area).

C/search-string/replacement-string/n

Finds, changes, and displays the first n ·lines, from the current
line, that contain search-string. In each of these lines
search-string is changed to replacement-string. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED .l,\.ND
CHANGED. If the end of text is reached before n finds, the
message "string not found" '.wil.l be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ is a sequence of characters delimited by
a matched pair of characters from the set:

! " t $ ' & ' () * + , - • / : ; < = > j

replacement-string/ is a sequence .of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an a.sterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample
Commands

C/VAR=/NET=/

C0 VAR="NET= 0

Notes

Changes the first occurrence of
"VAR=" to "NET= 0 in the first
line that contain.a it.
Sante as above. ----------------••------------

PAGE 8

TRS-80 MODEL I/III COBOL CEDIT

-------------TAll•BO@)-------------
c/RETRY/R/4 Changes the first occurrence of

"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*
Changes the first occurrence of
."MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA" to "" (null string)

D line-range

i.e., deletes the first "EXTRA" in every
line that contains it.

Deletes lines in the specified range and renumbers the following
lines using the current increment. If line-range is omitted,
the current line is deleted.

Sample
Commands Notes

D. or D
D2
D98:115

DlOOO:*

E line-reference

Deletes the current line.
Deletes line number 2.
Deletes lines found in the range 98 to
115.
Deletes all lines numbered 1000 or
higher to end of text.

Starts edit mode using the specified line. If line-reference is
omitted, the. current line is used.

Edit sub-commands:
<ENTER> Ends editing and returns to command mode.

shift<up-arrow> Causes escape from sub-~it insertion
(X, I, and H sub-commands) and returns to
edit mode.

n <SPCBAR> Advances cursor n columns.
If n is omitted, 1 is used.

L "Lists" working. copy of the line and
starts a new working copy.

X "Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use .. shift<up-arrow> to escape .to edit mode.

I mode at the

TRS-80 MODEL I/III COBOL CEDIT

---....... -------Ts:IS-80@)----------------

A

E

Q

H

nD

nC

nSc

nKc

F/search-string/n

current cursor position; use shift<up-arrow>
to escape to edit mode.

("Again") Cancels changes and starts a new
working copy of the line.

("End") Saves edited line and exits to
command mode,> prompt.

(•Quit") Cancels changes and returns to
command1lllode, > prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

"Deletes" n characters beginning at current
cursor position. If n is omitted, l is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

"Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted'., l is used.

("Search") Moves cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, l is
used.

("Kill•) Delete$ a)."l characters from current
cursor position up to nth occurrence
of character c, counting from current
cursor position. If n is omitted, l is
used. The deletion is not echoed; use<~>
to see the line with characters deleted.

Finds and displays the first n lines·wbich contain
search-string, starting at the current line. -otffiY THE FIRST
OCCURRENCE 0 0F search-string IN A SINGLE LINt IS COUNTED. If the
end of text is reached before n finds, the)JleSsage rstring not
found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.
/search-string/ is a sequence 0£0 charaoters,delimited by ____,...., -....... 11111111

PAG810

TRS-80 MODEL I/III COBOL CEDIT

------------TRII-IID@)--------------
a matched pair of delimiters chosen from the set:

! "i$%&' ()*+,-./: 1<=>?

n Tells the maximum number of "finds" you want. n can be a
number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is
listed.

Sample
Commands

F/VAR=/

F"VAR="
F/RETRY/4

F/MISPELING/*

H line-range

Notes

Finds and displays the first line that
contains the string "VAR=".
Same as above.
Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".
Finds and displays every lioe containing
at least one occurrence of "MISPELING".

("Hard-copy") Lists to the printer all lines found in the
specified range. If line-range is omitted, all the lines after
and including the current line are printed.

The printer should be initialized (with FORMS) before you
execute this command.

Sample
Commands

Ht:*
B7020
H672:800

Notes

Lists all lines to the printer.
Lists line 7020 to the printer.
Lists all lines found in the range 672 to
800.

I start-line, increment

Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

,increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

PAGE 11

TRS-80 MODEL I/III COBOL CEDIT

-----------Tlll&aa~-----------
next line number (start-line+ increment).

Special Keys in the Insert Mode

->

shift<-

<-

<ENTER>

Advances the cursor to the next eight-column
boundary (8, 16, 24, •••).

Erases the line and starts over.

Backspaces the cursor and erases the character.

Marks the end of the current line. The editor will
store the current line and start a new one, using
iiru;::rement to generate the next line number.

Overwriting lines
An automatic line numberer is provided to prevent you from
accidentally overwriting lines already entered. If a line
number conflict occurs the complete file .will be renumbered from
the current start-line by the current increment.

Sample
Commands

I

I,l

145,2

1100

L filespec

Notes

Start inserting at current line number,
using current increment.
Start inserting at current line ,number,
using 1 as an .increment. If current.line
number is in use, start with current line
plus·l.
Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.
Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first. If you chain
the new text onto the old, the line numbers will start at the
current start-line and be incremented by the current increment.

filespec is a TRSDOS file specification for a FLR text file.
The file may have been created by this COBOL editor or by
another means. However, it must be in the COBOL source file
format. (See Source File Format.}

PAGE 12

TRS-80 MODEL I/III COBOL CEDIT

--------------TAS-80@)--------------

M

Sample
Commands

L DEMO/BAS:l
L XDATA

Notes

Load DEMO/BAS from drive 1.
Load XDATA

Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample
Command

M

Notes

A typical response in a 48K system
might look like this:
000427- TEXT
039383- MEMORY
Meaning you have 427 bytes of text, and
39383 free bytes of memory available.

N start-line,increment

Renumbers the entire text.

Note: The renumbering commands DO NOT .RENUMBER LIN~ .REF&RENCES
inside your program text; do not use them unless you are not
concerned wth line references (GOTO, IF ••• THEN ••• , GOSUB,
etc.). To renumber your program properly, use the Compiler
COBOL . .RENUMBER command.

start-line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

The current line before numbering is also the current line after
renumbering.

Sample
Commands

N
NlOO

Notes

TRS-80 MODEL I/III COBOL CEDIT

------------TRS-90@) ___________ _

NlOO, 25

Pline-range

current value of increment.
As above; line numbers at increments
of 25.

Prints the specified lines to the display. If line-range is
omitted, 14 lines starting at the current line are displayed.

Q

Sample
Conunands

p

P233
P.
P*
Pl40: 615

Notes

Prints 14 lines starting at current
line.
Prints line 233.
Prints the current line.
Prints the last line.
Prints the lines within the specified
range. Lines 140 and 615 don't have to
be existing·lirie numbers.

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-reference, increment

Replaces, contents of the specified line and continue in insert
mode. If line-reference is omitted, the current lil)e is used.
If increment is omitted, the current increment is used. Also
renumbers the complete file using the current start-line and the
new increment. · ·

The R command is equivalent to the D {delete) command followed
by the I (insert) CQ~nd. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.
After you press <ENTER>, the editor wil,l contine in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands

Rl25, 3

Notes

Prompts you to insert replacement
text for line 125. Subsequent line
numbers will be generated with an
increment of 3. · ___________ ,._. __________ _

PAGE 14

TRS-80 MODEL I/III COBOL CEDIT

-------------TRS-SO@) ___________ _

R*

T

Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

Displays the top line (first line in the text area)

W filespec

Writes the text in .RAM into the specified file.

filespec is a TRSDOS file specification. If file already exists,
its previous contents will be lost.

Sample
Commands

W DEMO/CBL:l
W XDATA

Notes

Save DEMO/CBL onto drive 1.
Save XDATA/CBL onto first available drive.

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line will
be changed; any other answer leaves the line unchanged. In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes
-------- -----..
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"
in every line that contains it, but asks
you to confirm each change before it
is made.

-------------lladlellllleli------------
PAGE 15

)

)

TRS-BO® MODEL 1/111

RSCOBOL
LANGUAGE
REFERENCE
MANUAL

A Description of the
RSCOBOL Programming
Language

m::nA:D TRS-BD

TM

SOFTWARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK!! A DIVISION OF TANDY CORP.

-rRS-80 Mo dE• 1

COBOL LANGUAGE MANUAL

JANUARY, 1981

COPYRIGHT NOTICE

TRS-80 (R) Model I/III COBOL
(C) (P) 1980, 1981 by Ryan-McFarland Corporation, Aptos,
California 95003; Licensed to Tandy Corporation; Fort
Worth, Texas 76102. All rights reserved.

TRS-80 (R) Model I/III TRSDOS DISK OPERATION SYSTEM
(TRSDOS) (C) {P) 1978, 1980 by Tandy Corporation. Ail
rights reserved.

TRS-80 (R) Model I/III COBOL LANGUAGE REFERENCE MANUAL
(C) 1980, 1981 by Ryan-McFarland Corporation; Licensed
to Tandy Corporation. All rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation of any portion of this manual is
prohibited. Wh.ile reasonable efforts have been taken in
the preparation of this manual t0 assure its accuracy,
Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual, or from the use of the
information obtained herein.

PREFACE

This re:ference document describes the COBOL Language as
implemented on the Radio Shack TRS-80 Model I and Model III
Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language,
the general operation of the TRS-80 Model I or Model III
Microcomputer, and the TRSDOS Operating System. The reader
is specifically referred to the following publications:

•
TRS-80 Model I/III COBOL User's Guide
TRS-80 Model I or Model III Operation Manual
TRS-80 Model I or Model III Disk System Owner's Manual

ACKNOWLEDQEMENT

Huch of the material in this manual is extracted from
X3.23-1974 COBOL Standard. Accordingly, the
acknowledgement .is made as req,uired in that document.

the ANSI
following

COBOL is an industrv language and is not the property of any
companv or group of companies, or of anv organization or group of
organizations.

No warranty, •~pre,s.ed 01' implied, is m•de by any cqnt1'ibuto1' or
bv the CODASYL P-rog-ramming Language Committee •s to the accuracy
and functioning of th• programming system and language. ·· Moreover,
no responsibility is assumed by any contributo1', or by the
committee, in connection therewi•th.

The authors and copyright holders of the copyrighted mate1'ial used
herein

FLOW-HATIC (trademark of Sperry Rand Corporation>, Programming
for the UNIVAC I and I I,. Data Automation Systems copyrighted
1958, 1959, bv Sperry Rand Corpo1'ations lBH Commercial
Translator Fol'm No. F28- 8013, cop,rrighted 1959 bV IBM; FACT,
DSI 27A5260-2760, copvrighted 1960 by Minneapolis-Honeywell

have specificallv authorized the use of this material in whole or
in pa-rt, in the COBOL specifications. Such authorization extends
to the -rep1"otluction .and use of COBOL specifications in programming
manuals or •i•ilar publications.

TABLE OF CONTENTS

Page

I. INTRODUCTION. 1

INTRODUCTION TO COBOL........................... 2
What is COBOL?. 2
The Histo'f'y of COBOL........................ 3
The Standardization of COBOL................ 4

CONVENTIONS USED IN THIS MANUAL................. 5
Words. :,
Brackets and Braces. 5
Ellipses.................................... 5
Punctu•tion , '.. 6
Speciai Characters.......................... 6
System Dependent Information................ 6

II. THE STRUCTURE OF THE COBOL LANQUAQE. 7,

THE LANQVAQE STRUCTURE.......................... 8
Cba-racter Set. 8
S•parators. 10
Charac ter-StT' i ng s. 11
COBOL Wol'ds. • . 11
User Words. 12
Rese'rv•d Words. 15
Literals.................................... 18
Picture String. 19
Coftlfflent-Entry ,_ 19
System Names , 19

THE PROQRAM STRUCTURE 20
Sou"rce Format. 20
Sta,tements ,, '• . . 22
Sentences. 23
Clauses and Entries......................... 23
Para,graphs. 24
Sec tii ons. 24
Divisions................................... 24

THE COPY STATEMENT 25

III. IDENTIFICATION DIVISION 27

INTRODUCTION. 2B

PROQRM'I IDENTIFICATION 28
The PROORN'I-ID Paragraph 249
The AUTHOR,. INSTALLATION, DATE-WRITTEN,

SECURITY Pa,-ag1'aphs. 249

IY. ENYIRONNENT DIVISION 30

INTRODUCTION. 31

CONFIQURATION SECTION ,. 32
TheSOURCE-COl'IPUTER Paragraph 32
The OBJECT-COl'IPUTER Paragraph 33
The SPECIAL-NN'IES Paragraph ; 34

INPUT-OUTPUT SECTION 36
The FILE-CONTROL Paragraph 36
The Sequential File Control Entr1J•.. 37
The Relative File Control Entrv 39
The Indexed File Control Entrv 41
The I-O CONTROL Paragraph , 44

Y. DATA DIVISION. 45

INTRODUCTION ~ . . 46

FILE SECTION. • . . 48'
The File Description Entrv 49
The BLOCK CONTAINS Clause IO
The RECORD CONTAINS Clause 51
The LABEL RECORD Clause••... 52
Th• YALUE OF Clause. 52
The DATA RECORDS Clause. 53

WORKINQ-STORAQE SECTION 54

LINKAQE SECTION. 5A

RECORD DESCRIPTION ENTRY 55
Level-Numbers. 55
El •••ntarv I teas. 55

77 LEYEL DESCRIPTION ENTRY 56

THE DATA DESCRIPTION ENTRY 57
The Level-Number. 60
The Data Name o-r FILLER Clause 61
The REDEFINES Clause•.................. 62
The PICTURE Clause. 64
The USAOE Clause. 75
The SION Clause. 77
The OCCURS Clause. 78
The SYNCHRONIZED Clause 80
The JUSTIFlED Clause 82
The BLANK WHEN ZERO Clause 83
The VALUE IS Clause 84
The RENANES Clause 87

DATA STRUCTURES. 89
Classes of Data. 89
Representation of Numeric Items 90
Representation of Algebraic Signs 90
Standard Alignment Rules 91

GUALIFICATION. 92

SUBSCRIPTINQ. 94

INDEX INO. • . 95

IDENTIFIER. 96

CONDITION-NAME•. , . . . ,'97

TABLE HANDLING. • . 98

VI. PROCEDURE DIVISION 101

THE PROCEDURE DIVISION 102
St1'ucture. 1·03
Dec la,-ati ves. 104
Procedu,-es. 104
Execution. 104

PROCEDURE REFERENCES 105

SEQMENTATION. 107
Segments. 107
Segmentation Classification 108
Segmentation Contt"ol............ 108
Rest-rictions on Program Flow 108

THE USE STATelENT 110

ARITHMETIC STATEMENTS 112
Arithmetic Expressions 112
Arithmetic Operators 113
Formation and Evaluation Rules 113

CONDITIONALS. 114
Relation Condition 115
Class Condition............................. 11B
Condition-name <Conditional Variable> 119
Switch-Status Condition '120
Comp lex Conditions. 120
Negated Simple Conditions 121
Combined and Negated Combined

Conditions............................... 121
Condition Evaluation Rules 122

SEQUENTIAL ORQANJZATION INPUT-OUTPUT 123
Function. 123
Organization................................ 123
Access Mode. 123
Current Record Pointer 123
I-O Status. 124

RELATIVE OROANIZATION INPUT-OUTPUT 126
Function. 126
Organization. 126
Access Modes. 126
Curratnt Record Pointer. 127
I-O Status. • 127
The INVALID KEY Condition 129
The AT END Condition........................ 130

INDEXED ORGANIZATION INPUT-OUTPUT 131
Function , .. ,_ 131
Organization. 131
Access Modes. 131
Cu1"rent Recot'd Pointer. 132
I-O Status. 132
The INVALID KEY Condition 136
The AT END Condition 136

PROCEDURAL STATENENTS 137
ACCEPT ... FRON Statement 137
ACCEPT Statement <Terminal I-0) 139
ADD Statement. 145
ALTER Statement •-•............... 149
CALL Statement...................... 150
CLOSE Statement (Seq,uential I-O> 152
CLOSE Statement <Relative & Indexed 1-0) 154
COMPUTE Statement 155
DELETE Statement <Relative & Indexed 1-0> ... 157
DISPLAY Statement <Terminal I-O> le&
DIVIDE Statement. 162
EXIT Statement. 165
90 TO Statement.......... 166
IF Statement. U,7
INSPECT Statement. 169
MOVE Statement. 177
MULTIPLY Statemtmt.......................... 182
OPEN Statement <Seq,uential 1-0>. 184
OPEN Statement (Relative & Indexed I-0) 188
PERFORM Statement. 192
READ Sta.tement <Seq,uential I-0) 203
READ Statement <Relative & Indexed I-O> 208
Rl:WRITE Sta.tement (Se41uential 1-0>. 209
REWRITE Statement <Relative & Indexed I-O> .. 211
SET Statement. 213
START Statement <Relative & Indexed I-0>. ... 215
STOP Statement. 217
SUBTRACT Statement 218
UNLOCK Statement ·. 222
WRITE Statement <Se41uential 1-0> 223
WRITE Statement <Relative & Indexed I-0) 226

APPENDIX A: ERROR MESSAQES 229

APPENDIX I: RESERVED WORDS 237

APPENDIX C: QLOSSARY................................ 242

APPENDIX D: COMPOSITE LANQUAQE SKELETON 267

I

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL <COnunon Business Oriented Language> is an English oriented
prografllfttint language designed primarily for developing business
applications on computers. It is described as English ori•nted
because its free form enables a prografllftter to write in such a wav
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarilg •• closelv
allied with the details of the problem •• the programmer himself.

Bec•use COBOL is a programming language it c•n be translated to
serve as cofllfttunication between the programmer and the computer.
The COBOL program <the source program> which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL p1"ogram into a machine readable foT'm
<the obJect pT'ogram>.

Although each computer has its own uni~ue COBOL
an industrv-wide COBOL effot't has resulted
compatibilitv so that a COBOL source program
among different computers of one manufactuT'er
of different manufacturers.

compile.,. program,
in a deg~•• of

tan be exchanged
or among computers

A COBOL p-rogram is both a readable document and an efficient
compute.,.. prog-ram. Th-roughout the studv of the COBOL language, it
is important to keep these two basic capabiliti•• of COBOL in • ind
and to obse1've the close re~ationship between the•.

The -readabilitv ,acto'r of the COBOL lan1ua1e facilitat••
communication not onlv between prog"rammer and unagem•nt, but also
among p1'0f1"ammers, with a minimu• of additional documentation. The
readabilittJ factor need not affect the othe'I" eq,uallV important
capat.ilitv of constituting an efficient compute" p'r0l1'a•; It is
p1'eciselv he1'e that the attention of a good COBOL PT'O91'a11t11eY" is
cente'red. He can profluce • solution in the fo1'm of •
well-integ,..ated COBOL pY"ogr•• b9 combi.ning the
following: knowledge of the pro.blem, p1'og1'afllftting technique,
capabilitv of the equipment, and familiaritv with.th• avail•ble
elements of the COBOL language.

The History o, COBOL

Development of the COBOL programming language is a continuing
process performed by the Programming Language Commi.ttee <PLC> of
the COnference on DAta SYstems Languages <CDDABVL>. This co..,.aittee
is made up of representatives of computer manufacturers and
computer u11ers.

The fi1'st version o.f the COBOL progNunming lar,guage to be
published by CODASYL was called COBOL-60. The second version,
cal led COBOL-61, cont.ained changes .. in,, the, organi a at ion of the
Procedure Division and thus was not co~plet.elv compatible with
CDBOL-60.

In 1963 the third version, called COBOL-61 Extended, was r:.e.teased.
It was basically COBOL-61 with the addition of the sort feature,
the addition of the report writer feature, and the modification of
the arithmetics to include multiple receiving fields and the
CORRESPONDINQ option.

The fourth version of the COBOL programming language, COBOL-65,
consists of COBOL-61 Extended with the inclusion of a sericts of
options to pT'ovide for the 1"eading, ldl"iting, and processing of
mass storage files and the addition of table handling features.

Beginning in 1968 the CQDASYL COBOL Programming Language Committee
began to T'epo'rt its developmental wo'l'fc in a JouT'nal of
Development. The fiT'st -report to be published was the CODASYL
COBOL JouT'nal ofl J)evelopment -- 1969. This JOUT'nal is the official
T'epol't of the CODASYL COBOL PT'o9r«11mming Language Committee and it
documents the d•velopmental activities. of CODASVL thT'ough July
1968. CDBOL-68 is b••·•• on COl°'--61 with ceT'tain addi ti.ons and
del•tions.

Additional COBOL Journal of Development 1'eports wel'e published in
1969. 1910 and 1973. Each documented the developmental activities
of CDDA&YL ft'om th.e pl'evious l'epoT't, T'esulting in continqalltJ
va1"tJing COBOL de.finitions.

The Standardization of COBOL

In September 1962 the American National Standards Institute (ANSI)
set up a committee to work on the definition of a st,endard COBOL
prog,-aauning la:nguaga. Thi• standardization effort was based on the
technical content o.P COBOL as defined bv CODASVL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work o,f CODASYL th,-ough Januarv 1968. This
first version was called American National Standal'd COBOL 1968.

In l"fay 1974 a revislon of AmeT'ican Naticmal Standal'd COBOL was
approved. This revti•ion, callttd Amer'ican National Standard COBOL
1974, is based upon the developmental wol'k of CODASVL through
Decembel' 1971. The COBOL programming language and compiler
descr'ibed in this document is· based on the American National
Standard COBOL 1974.

PAO&: 4

CONVENTIONS USED IN THIS MANUAL

This manual pT'esents the language definition and capabilities of
COBOL in a gen.eT'al llJ accepted syntax consistent 111i th the 1974
AmeT'ican National StandaT'd COBOL document. As a T'esult, COBOL
Svntax is speci,ied by formats employing special notation.

Words

All underlined uppeT'case words are key words and are re~uired when
th• functions of which they are a paT't ape used. Uppercase words
which are not underlined are optional and mav OT" mav not be
present in the source progT'am. UppeT'case words, whethe-r undeT'lined
or not, must be spelled coT'rectly.

LoweT'case WOT'ds are generic terms used to represent COBOL words,
literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appettdage to the term serves to identify that tel"m fol' explanation
or discussion.

Brackets and BT'aces

When a pol"tion of•• gene·r.11 for11at· is enclosed in bT'ackets, Cl,
tflat poT'tion mav he inch,ded or .. o•it:ted at the use:r's choice.
BT"aces, <>, 4H'lclosing a po'l'tion of a :genel'al ~o-rmat means a
selection of one of the options contained within the bT'ac•s must
be madtt. In both cases, a choice is indicated by vertically
stac•ing the possibilities. When brac•ets or braces enclose a
portion of a format, but only one possibilitv is shown, the
function of the brackets or bt'aces is to delimit that portion of
the fo1'mat to which a following ellipsis applies. If an option
within braces contains only -reserved words that a1'e not kev words,
then the option is a default option (implicity selected unless one
of the other options is explicitly indicated>.

Ellipsis

The ellipsis(... > represents the position at which repetition may
occur at the use1''s option.

PAOE 5

Punctuation

The punctuation characte1"s comma an4 semicolon are sho111n in so••
fo1"mats. Where shown in the formats, they are optional and may be
included or 0111i tted by the user. In the souTce pT"ogN1m thes:e two
punctuation chaTacters aTe inteTchangeable and either 111ay be used
anvwhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or
paTagraph.

If desired, a semicolon or comma may be used bet111een statements in
the Procedure Division.

Par•g·r.11phs 111ithin the Identification and ProceduT'e Divisions, and
the entries 111ithin the EnviTonment and Data Divisions must be
terminated by the separator peTiod.

Special Characters

,The chal'acteT's '+', ,_,., "'::>', '<', ,.,,, when appearing in, foTmats,
although not undeT'lined, are l'eq,uired 111hen such fol'mats ,,af'e used.

Svstem Dependent Infol'mation

Selected .feat.ul'es in ANSI' COBOL aT'e il1tended fol"'
implemento'ft, to acco11ad,ate the c.apabiliti'es and
the host svste111. These sy1tem dependent items
the COBOL UseTs 0:uide.

PAGE 6

definition b9 the
1"tJst,-ictions of

..... "SUffllDal'i Htd in

II

THE STRUCTURE OF THE COBOL LANQUAQE

PAQE 7

THE LANQUAOE STRUCTURE

The smallest element in the COBOL language is the character. A
character is a digit, a letter of the alphabet, or a symbol. A
COBOL word is one possible result obtained when one or more COBOL
characters are Joined in a sequence of contiguous characters. Just
as English words are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using the COBOL rules of grammar, the COBOL words and COBOL
punctuation characters are combined into statements, sentences,
paragraphs, and sections. When writing normal English, a failure
to follow the rules of grammar and sentence structure may cause
misunderstanding; the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty-one chaTacters:

Digits

Letters

Punctuation

Special

..
(

)

>
<
+

* I -•

0 through 9

A through Z

Blank (or space>
Comma
Semicolon
Period
Guote
Left parenthesis
Right parenthesis

Oreater than
Less than
Plus
Ninu~ <or hyphen)
Asterisk
Slash <or Stroke)
Equal
Currenctj

These characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAK B

Character• are combined to form either • sepaT'atol"
character-string.

Ol' a

The COBOL character set is a pl'oper subset of the ASCII character
code set nattve to t;be computer. The complete character set may be
used onlv within non numeric lite,-als and comments. The chart
below gives the t.exadeci111al and deci111al codes for the complete
character set.

-------------------------~~---------------------------------
Hexadeci111al Deci111al Hexad•cimal Deci111al

Character Value Value Character Value Value
----------------~-~-~--~-----------------------~------------

Space
'
" • • X
le
I

(

)

* +

j
0
1
2
3
4
5
4
7
8
9

<
=
>
?

20
21
Z2
23
24
25
26
21
28
29
2A
21
2C
2D
2E
2F;
30
31
32
33
34
35
36
37
38
39,
3A
3B
3C
30
3E
3F

32
33
34
35
36
37
38
39
r40
41
42
43
44
45
46
47
48
49
,IC)
,ft
52
53
54
55
56
57
58
59
60
61
62
63

PAOE 9

• A
B
C
D
E
F
Q
H
I
.,J

K
L
t1
N
0
p
0
R
s
T
u
V
w
X
y
z
[

\
]

40
41
42
43
44
45
46
47
48
49
4A
4.B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F

64
65
66
67
68
69
10
71
7.2

.73
74
75
76
77
78
79

··BQ
81
82
83
84
85
86
87
88
89
,90
91
92
93
94
95

Separatol"s

A separator is a string of one or more punctuation cha-racters.

Punctuation characters belong to the following set:

-(
II

)

;

Space
Co,n,na
Equal sign
Left par•nthesis
Period
&uotation mark (double)
Right pa-renthesis
Semicolon

Separators are formed according to the following rules:

1. A space is a separator. Anywhere a space is used as a
separator, more than one space may be used.

2. Comma, semicolon, and period are separators when immediatelu
followed bv a ·space. These separators mav •PP.ear onlv when
explicitly permitted. ·

3. Parentheses are separators which may appear only in balanced
pairs of left and right parentheses delimiting subscripts,
indices, a'ri.thmetic expressions or conditions.

t.:eft parentheses must be preceded by a separato'I" space OJ' left
parenthesis.

Right parenthesis -9ust be folht,wad by one of the se.parato'l's:
sp•ce, period, semicolon, coffiffi• 01' right pa,-enthesis.

4. Guotes are separato1's which may appeal' ctnl·Y in 6alan~ed pai'f's
delimiting the nonnumeric lite'rals except when the lite'ral is
continu•d.

An opening q,uotation mark must be i,n,nediatelv p1'eceded by a
apace o.,. left parenthesis. ·

A closing quot•tion mark must be i,n,ne1Uatelv followed bv one
of the sepa'l'atol's: space, comma, semicolon, pe'l'iod or T"ight
parenthesis.

PAO£ 10

5. The separatoT space mav optionallV immediatelv precede all
separators except:

As specified bv reference format rules.

As the separator closing q,uotat ion mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The sepaTator space may optionally immediatelv follow any
sepaTator except the opening q,uotation mark. In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of• PICTURE character-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
the separators space, comma, semicolon, or period.

These rules do not apply to the characters within nonnumeric
literall, picture 1trings, or comments.

Character-Strings

A character-string is a seq,uence of one or more character• that
form a COBOL word, literal, picture string, or comment. A
character-strint is delimited bg separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters
which form either a user word or a reserved word. All words are
one or the other.

PAOE 11

User Words

User words are composed of the alphabetic characters, the numbers,
and the hvphen character. A user word must not begin or end with a
hvphen. With the exception of paragraph-name, section-name,
level-number and segment-number, all user-defined words must
contain at least one alphabetic character. There are twelve tvpes
of u1utr words:

program-name
file-name
record-name
data-name
paragraph-name
section-name

Program-Name

condition-name
index-name
alphabet-name
text-name
level-number
segment-number

The program-name identifies the COBOL source and obJect program.
The name must contain at least one alphabetic character. Onlv the
first 6 characters are associated with the obJect program.

File-Name

File-names are the internal names for files accessed bv the source
prograa. Thev are not necessaY'ilv the same as the e,cternal naaes
given to the files; File-names must contain at least one
alphabetic character and aust be unique~

Record-Naae

RecoY'd-names are used to name data records within a file. Thev
must contain at least one alphabetic character and, if not unique,
must be made uni11.ue bV qualification with the file name.

Data-Name

A group of contiguous characters or a word of binarv data treated
as• unit of data is called a data item, named bv a data-name. A
data-name must contain at least one alphabetic character.
References to data items must be made unique by qualification or
the appending of subscripts <or indices) or both. Complete unique
references to data items are called identifiers.

PAGE 12

Pa,-ag,-aph-Name

A paragTaph-name is a
of a set of COBOL
paT"agraph-name must
section-name.

Section-Name

pToceduTe name that identifies the beginning
pl"ocedu,-al sentences. I.P not uniq,ue, a

be made uniq,ue by q,ualification with a

A section-name is a pl"ocedure name that identifies the beginning
of a set of paragraphs. Section-names must be uniq,ue.

Condition-Name

A condition-name may be defined in the SPECIAL-NAMES paragraph
within the Environment Division or in a level-number 88
description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value,
set of values, or range of values within a complete set of values
that a data item mav assume. The data item itself is called a
conditional variable.

A condition-name is used only in conditions as an abbTeviation fo,
the Telation condition which assumes that the associated switch OT
conditional variable is eq,ual to one of the set of values to which
that condition-name is assigned.

Index-Name

An index-name names an index associated with a specific table. It
must contain at least one alphabetic character and must be uniq,ue.

Alphabet-Name

An alphabet-name is used to specify a charactet" code set. It must
contain at least one alphabetic characteT and must be unique.

Text-Name

A text-name is the name of a COBOL librarv text file. It must
co1"1"aspond exactlv to• valid file access-name as described in the
opet"ating svstem documentation.

PAOE 13

Level-Number

A level-number is used to specify the position of a data item
within a data hierarchy. A level-number is a one- or two-digit
number in the range 01-49, 66, 77 or 88.

Level-numbers 66, 77 and 88 identify special properties of a data
description entrv.

Segment-Number

A segment-number specifies the segmentation classification of a
section. It is a one- to two-digit number in the range 01-99.

Th• structure of COBOL governs the use of certain COBOL words
called 1'eseT-ved words. Reserved words, recognized b\l the C.OBOL
compiler, aid the compiler in determinJng how to generate a
program .. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated bv the format of the
language. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized b\l the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized b\l the compiler:

Key Words

Ke" wor.ds
Optional words
Connectives
Fi~urative constants
Special-characters

Key words are re,uired •laments of COBOL formats. Their presence
indicates specific compiler action.

Optional Words

Optional words are optional elements of COBOL formats. Their
presence has no effect on the obJect program.

Connectives

The connectives OF and IN at'e. used interchangeablV. to connect
q_ual i fiers to a user word. The w.ords AND and ·OR are log teal
connectives and are used in the formation of conditions.

Figurative Constants

Figurative constants identify commonly used constant values. These
constant values are generated by the compiler according to the
context in which the Ntferences occUT ... Not41, that figuT'atives
TepTes,mt values, not literal occurTences. Th.us GOOTE ·cannot be
used to delimit a nonnumeTic literal, SPACE is 0 not '.a separ'ator,
and so fo?th.. SingulaT a.nd plural . ,·o.,.ms ;o:, fiJJU-ra~.ives aTe
equival&nt anct may b• used interchang•Al1J. ·

ZERO
ZEROS
ZEROES

. ..

R&presents the value O or one or more ze?o <O> characteTs,
depending on context.

SPACE
SPACES

R&p-resents one or moTe space<) characters.

HIQH-VALUE
HIQH-VALUES

Represents one or moTe of the highest cha-r'aciftt-rs ln the
collating seg_uenc.e <hexadecimal FF>.

""· ' J ,.,·, ·h ' ,y

LOW-VALUE
LOW-VALUES

RepTesents one . or more af the low•.tt cha.T'•cters
co~l h1t1,-ig sequ•rtf i. (ttt'\fxacf1tcima{l 00'). . .

GUOTE
OUOTEB

. ;; f:::· . ~· < ~

Represents one 01' more quote (fl) cha,-acters.

PAQE

ALL lite,-al

Rep1'esents one or more of the characters compr1s1ng the lite,-al.
The literal must be either a nonnumeric literal or a figurative
constant. When a figurative constant is used, the wo,-d ALL is
redundant.

When a figurative constant rep1'esents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is associated with another data
item, as whtm the figurative constant is moved to or compared

2.

with another data item, the st1'ing of characte1"s specified by
the fiturative constant is repeated character-by-cha1"acter on
the right until the size of the resultant string is •~ual to
the size in cha1'acters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that mav be associated with the data item.

When a figurative
data item, as when
DISPLAY or STOP
character.

constant is not associated with another
the figurative constant appears in a

statement, the length of the string is one

A figurative constant mav be used wherever a literal appears in a
format, except that whenevel' the literal is rest1'icted to having
onlv numel"ic ch•racters in it, the onlv figuTative constant
permitted is ZERO (ZEROS, ZEROES>.

Each Tese,-ved word:i which
constant value is a distinct
of the construction 'ALL
distinct character-string~.

Special Characters

is vsed to ?eference a figurative
character-string with the exception
literal' which is composed of two

The special cha1'acte1' WOT'ds are the arithmetic operatoT's and
T'elation chaT'•cters:

+ Plus sign (indexing>
- Ninus sign (indexing>
> Qreater than
< Less than
• Eq,ual to

PAOE 17

Literals

A literal is a character-string whose ,orm determines its value.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in quotes. Anv
characters in the COBOL character set malJ be ueed. Quote
characters within the string are represented bV two contiguous
quotes. Tbe value o, the literal is the string itself excluding
the delimtting quotes. and one of each contig~ous pair of imbedded
q,uotes. The value of the literal mau contain from 1 to 2047
characters.

Examples:

Literal

"AGE?"
II .. "TWENTY""?"

Value

AGE?
"TWENTY"?

""""" illegal <odd number of quotes>

Numeric Literals

A numeric literal represents a numeric value,
character-string. Nume1' ic 1 i te-rals are composed acco1"'1Ung
following t'ules:

1. The literal must contain f,-om 1 to 18 digits.

not a
to the

2. The literal may contain a single plus o1' minus sign if it is
the first character.

3. The literal mav contain a single decimal point i.f it is not
the last character. The decimal point must be rept'esented with
a comma if the DECIMAL-POINT IS COl'll'IA phrase is specified !n
the SPECIAL-NANES paragraph.

Examples:

1234
+1234
-1. 234

. 1234
+. 1234

PAQE 18

Pictu-re St-ring

A picture string consists of certain combinations
from the COBOL character set used as symbols.
character appearing as part of a picture string is
be a symbol, not a punctuation charact•r.

Comment-Entry

of characters
Any punctuation

considered to

A coaaent-entrv is an entry in the Identification Division that
mav contain any characters from the computer's character set.

System Names

System names identify certain hard111are or softw•re system
codlpontmts. Svstem names consist of device-::-names and switch-names.

Device-Names

PRINT
INPUT
OUTPUT
INPUT-ouTPUT
RANDON

Switch-Names

SWITCH-1

SWITCH-&

Component

printer or print file
input only device
output onl~ device
input-output device
disc

Component

soft111are switches

THE PROQRAM STRUCTURE

Soul"ce Format

COBOL progl"ams are accepted as a sequence of formatted lines <or
records) of 80 characters or less. Each line is divided into five
areas:

Columns

1-6
7
8-11
12-72
73-80

Area

suutuenc• numba,
ind i cato-r
A
B
identification

The sequence number and identification areas are used for clerical
and documentation purposes. They aTe ignored by the compiler.

Jfhe indicator aPea is used for denoting line continuation,
comments, and debugging.

A1"eas A and B contain the actual program according to the
follo-..ing rules:

1. Division heade,-s, section headers, pal"agT-aph headers,
section-names, and pa,-agraph-names must begin in al"ea A.

2. The Data Division level indicator FD and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B, although Bis pl"eferable.

3. The key word DECLARATIVES and the key wo-rds END DECLARATIVES,
precede and follow, -respectively, the declaratives portion of
the Procedure Division. Each must appear on a line by itself
and each must begin in area A and be follo-..ed by a pe-riod and
a space.

4. Any other language element must begin in area B unless it
immediately follows, on the same line, an element in area A.

PAQE 20

Continuation of Lines

WheneveT a sentence, entTy, phrase, or clause Teq,ui,-es moTe than
one line, it may be contin.-,ed by starting subseq,uent line<s> in
area B. These subse~uent lines aTe called the continuation
line(s)'. The line being continued is called the continued line.
Any llfOTd OT literal may be bToken in such a way that pal't of it
appears on 6 continuation)ine, according to the following rules:

1. A hvphen in the indicatoT area of a line indicates that the
fil"st nonblan1c chaTacteT in area B of the cur,-ent line is the
successoT' of the last nonblank tharacteT of the preceding line
llfithout any intervening space. However, if the continued line
contains a nonnumeTic literal 11Jit,hout closing ctuotation mark,
the first nonblank. character in area B on the continuation
line must be a quotation mark, and the continuation starts
with the chaT'acter immediately after that quotation mark. All
spaces at the end of the continued line a~e conside~ed part of
the literal. Area A of continuation line must be blank.

2. If there is no hyphen in the indicator aTea of a line, it is
assumed that the last character in the pT'eceding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B aTeas.
A blank line can appeaT' anywhere in the source progra~ except
immediatelv preceding a continuation line with a hvphen in the
indicatoT' aTea.

Cc,mment Lines

A cofflfttent line is anv line with an asteT'isk <*> in the indicato1"
area of the line. A comment line can appear as anv line in a
source program after the Identification Division hea.der. Any
combination of characters from the computeT's character set may be
included in area A and aTea I of that line. The asterisk and the
chaT~cte1"s in at'ea A and are• 8 will be prod~ced on the listing
but seTve as documenta~ion only.

Successive comment lines are allollfed. Continuation of comment
lines is permitted, except that each continuation line must
contain an aste1"isk in the indic,\o,- area.

A special fo1'm of comment li.ne TepTesented by • slash (/) in the
indicator •re• of the line causes page eJection pTioT to printing
the comment.

PAOE 21

Debugging Lines

A debugging line is anv line with a Din the indicator area of the
line. Anv debugging line that consists solelv of •paces from area
A to the identifier area is considered to be a bla.nk li.ne.

A program that contains debugging lines must be
correct with or without the debugging lines.

suntactically
y ~

A debugging line will be
characteri•tics of a comment line
specified at compiler invocation.

considered to
if the .debug

have all
option is

the
not

Successive debugging lines are allowed. Continuation of debugging
lines is permitted, except that each continuation line must
contain a Din the indicator area, an.cl chal'acter strings mav not
be broken ac,-oss two 1 ines.

Statements

COBOL statements alwavs begin with a kev word called a verb. The"re
are three kinds of statements: directive, conditional, and
imperative.

A directive statement specifies action to be taken bv the compiler
during compil•tion. The directive statements are:

The COPY and USE statements.

A conditional statement specifies that the t-ruth
condition is to be dete-rmined and that the subse,uent
the obJect program is dependent on this l"ruth
conditional statements are:

An IF statement.

value of a
ac;:tibn of

valt.1e. The

A READ statement with the AT END or lNVALID KEV phrase.

A DELETE, REWRITE or START statement with the. INVALID KEV
phrase.

A WRITE statement with the INVALID KEV phrase.

An a"rithmetic statement .<ADD, ~ONPUTE, DIVIDE, NULTJPLV,
SUBTRACT> with the SIZE ERROR phrase.

PAOE 22

An i•perative statement specifies an unconditional action to be
taken by the obJect program. The imperative statements are:

A READ state•ent without the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement without the INVALID KEY
phrase.

A WRITE statement without the INVALID KEV phrase.

An arithmetic statement <ADD, CONPUTE, DIVIDE, MULTIPLY,
SUBTRACT> without the ON SIZE ERROR phrase.

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP state•ent.

Whenever the term imperative-state•ent appears in the format of a
COBOL verb, it refers to one or more consecutive imperative
state•ents. The ~•quence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence is a •equence of one or more statements terminated by
the period separator. There are three kinds of sentences:
dJr•ctive, conditional, and imp•rative.

A directive
•*•••••nt.

sent•nce ••Y contain onlv a singl, d.irective

A conditional sentenc• is a conditional statement, optionally
prec•ded tav - ••ca.uence of imperative statements, terminated bv a
period followed bv a space.

An imperative sentence is one or more imperative statements
terminated bu a period separator.

Clauses and Entries

An entrv is an item of descriptive
of consecutive clauses. Each clause
entrv. Clauses are separated bv
separators. The entrv is terminated

PAGE 23

or declaratorv nature composed
specifies an attribute ol the

space, comma, or semicolon
bv a period separator.

Paragraphs

A paragraph is a setuence of an arbitrary number, which may
zero, of sentence-. or entries. In the J.dentification
Environment Divisions, each paragraph begins with a reserved
called a paragraph header. In the Procedu1"e Division,
parag,-aph begins with a use,--defined pa,-agraph-name.

Sections

be
and

word
each

A section is a se4uence of an arbit1"a1"V number, which mav be zero,
of parag,-aphs in tne Environment and Procedure Divisions and a
sef{Uence of an a1"bitra1"1J number, which may btt zero,, of •ntries in
the Data Division. In the Environment and Data Divi-sions, each
section begins with reserved words called a section headeP. In the
Procedure Division, each section begins with a useT'-defined
section-name.

Divisions

Each COBOL progT'am consists of fouT' divisions; each is c:oapesed of
paragraphs OT' sections. These are the Identification, EnviT'onment,
Data, and P-roceduT'e divisions, in that 01'de?, All divi•ioni aT"e
re4uired. Each division begins with a group of Peserved~woT'ds
called a division header.

PAGE 24

THE COPY STATENENT

The COPY stateuaen't provides the facilitv for co.p,ving text from
user-specified files into 1:he.,SQ.U'M:e p:rogr.am. Text is copied from
the file without change. The effect of the interpretation Qf the
COPY statement is to insert text into the source program, where it
wi·l l be tY-eated bV the comp i let- as .part of the sou-rce program.

COBOL librarv text is placed on the COBOL librarv as a function
independent of the COBOL program and according to operating svstem
techniques.

FORMAT

COPY text-name.

The COPY statement must be preceded by a space and terminated bv
the separetor period. There must not be any additional text in
area B following the separator period.

Text-name is the external identification of the file containing
the text to be copied. Its fo-rmat conftorms to the rules fo-r
filename (or pathname> construction of the host operating svstem.
Ift the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric liteT'al and
enclosed in quotation marks.

A COPY statement mav occur in the souT'ce prog1"am anvwheT'e a
characterstring or separator mav occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statements is
logically e~uivalent to processing all COPY statements prior to
the processing of the ~esulting source program.

The effect of processing a COPY statement is that the librarv text
associated with text-name is copied into the source program,
logicallv replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

Th• librarv text is copied unchanged.

Debugging
statement
statement
specified

lines are pe,-mitted within libra1"1J
is specified on a debugging line,
will be processed onlv if the debug

in the compile,. invocation options.

text. If a COPY
then the COPY
option has been

The text produced as• result of processing a COPY stat•ment mav
not contain a COPY statement.

The syntactic correctness of the library text cannot be
independentlu determined. The svnt•ctic cor'f'ectness of the •ntire
COBOL source cannot be dete,-mined until all COPY statements have
been completelv proc••••d.

Lib1"a1'1J text must confo1'm to the rules fol' COBOL source format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY II INPUTP. COBOL ff.

PAQE 2o

III

IDENTIFICATION DIVISION

PACE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant obJect program. In addition, the user may include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROORAM-ID. program-name.

[AUTHOR. [comment-entry] ... J

[INSTALLATION. [comment-entry] ... J

CDATE-wRITTEN. Ccomment-entrvl ... J

[SECURITY. Ccomment-entryl ... l

PROQRAM IDENTIFICATION

The ldentification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph, which is the PROQRAM-ID paragraph. The other paragraphs
are optional and may be included at the user's choice, in the
order of presentation shown.

PAGE ~S

Th• PROORN1-ID Paragraph

The PROQRAN-ID paragraph, containing the program-name, identifies
the source program, the obJect program, and all listings
pertaining to a particular program. A program-name is a
user-defined word made up of onlv those characters from the word
set.

A program-name cannot exceed 8 characters in length, and must
contain at l1tast one alphabetic charact•r located in an1i1 position
within the program-name. Each program-name must be uni4ue.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY paragraphs
are optional. The programmer mav use these paragraphs to document
information pertaining to the paragraph header.

The comment-entry mav be an1i1 combination of characters from the
computer's character t.et. The continual:ion of the comment-entry by
the use of the hyphen in the indicator area is not permitted,
however, the comment-entry may be contained on one or more lines.

PAQE 29

IV

ENVlRDNNENT DIVISION

PAOE 30

INTRODUCTION

The Envi-ronftfent Division desc-ribes th• ha1"'dwa1"'e confliguT'ation ol
the compiling comput•.,. <souT'ce computeT') and. the computer on which
the ol>Ject p1'og'ram is run <obJect compute'r). It also describes the
relationship between the files end the input/output media.

The Environment Division must be included in eve'l'v COBOL source
prog"ram.

ThePe are two sections in the Envi-ronment Division: the
ConfiguPation Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIQURATION SECTION.
--~-~~-~-------------~~
SDURCE-CONPUTEfl. computer-namv.

OBJECT-COMPUTER. compute,--n•me.

[SPECIAL-NANES. special-names-entT',l. ____ ,.. _____ ,... __ _

C INPUT-DUTPUT SECTION.

FILE-CONTROL. <f i le-cont-rol-ent,-v> ---------.-.--------
C I-0-CONTROL. input-output-cont'rol-.ent'rV l l.

PAQE 31

CONFIOURATION SECTION

The Configu-rati,on Section deals ,with the <:ha-rac•••'i,s1ric• o.P the
source computer and tile obJect compute,-.. !Thti:s, "••~tion ,,is divided
into th'l'ee ,p.ar,ag-raphs:

the SOURCE-COMPUTER paragraph, which describes the computer
config.u,-.ation on whic·h the "s;ourctJ' ·;p:ro..,.am is coMpd.led

the OBJECT-COMPUTER paragraph, which describes the computer
configuration on. which the ob Ject p1"og1"am p-rcctdcuced hy. the
comp i 1 er is t .. o be :run

the SPECIAL-NANES paragraph, which relates names used by the
compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-CONPUTER pa-ragTaph id0enti1':i\es~~tme oo.apu't'lr upon. J11h ich
the program is to be compiled.

FORMAT

SOURCE-COMPUTER. compute-r-name.

Computer-name is a user-defined word and is onlv comm•nt·arv.

PAQE 32

The OBJECT-COMPUTER pa-ra9Taph identifies the compute-r on which the
p-rog1'am is to be executed.

FORNAT

OBJECT-COMPUTER. computer-name _______ .,.,. ___ .., _____

C,NENORV SIZE intege1' <WORDS >J

<CHARACTERS)
----------.-<MODULES >

C,PROQRAN COLLATINQ SEGUENCE IS alphabet-name].

Compute-r-name is a use-r-defined ~ord and is onlv commentar,.

The NENORV SIZE definition is t-reated as commentarv.

The PROQRAN COLLATINQ SEGUENCE clause spetifies the program
collating sa,uence to be used in determining the truth value of
anlJ non.numeric compal'isons. The Progl'am Collating Sequence clause
is tl'eated as commentarv1 the collating sequence ,is always ASCII.

PAQE 33

The SPECIAL-NANES Paragraph

The SPECIAL-NANES paragraph relates names used by the compiler to
user-names in the source program.

[SPECIAL-NAMES. [,switch-name

<ON STATUS IS cond-name-1 C,OFF STATUS IS cond-name-2J)l ...

<OFF STATUS IS cond-name-2 C,ON STATUS IS cond-name-1 l>

[,alphabet-name IS <STANDARD-1)J ...

<NATIVE >

[,CURRENCY SIQN IS literal-1J

C,DECIMAL-POINT IS COMNAJ . J

Switch-name mav be SWITCH-I, ... , 'SWITCH-&.

At least one condition-n:ame must btt associated with each
switch-name given. The status of 'the switch ,is .specified btJ
condition-names and interrogated btJ testing the condition-names.

The alphabet-name clause p-rovides a means flo1" relating a name to a
specified cha1"acter code set and/or collating seq,uence. The
alphabet-nam• definition is treated as cofflfRentartJJ the collating
seq,uence is alwavs ASCII.

The literal which appears in the CURRENCY SIQN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
o, the following characters:

digits O through 9;

alph11betic characte'rs A, B, C, D, L, P, R, S, V, X, Z, or the
space;

• p e c i a 1 char II c t er s '* ' , '+ ' , ' - ', ', ' ,
, .. ,, '/', '•'

, ,
'

'; ,, , (, ' ,) , '

If this clause is not present, only the currency sign<•> is used
in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function o, comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

INPUT-OUTPUT Sf:CTI.ON

The INPUT-OUTPUT section names the files and external media
req,uired bfJ an obJect program and pT"ovides i.-formation required
for transmission and handling of data duT"ing execution of the
obJect program. This section is divided into ·ttt•o para1raphs:

the FILE-CONTROL paragraph which names and associates the
files with external media.

the I-0-CONTROL paragraph which defines special control
techni,q,ues to be used in the obJect program.

FORMAT

CINPUT-OUTPUT SECTION.

FILE-CONTROL.

<file-control-entrv>

C I-0-CONTROL.

The FILE-CONTROL Paragraph

The FILE-CONTROL para9raph names each file
specification of other file-related information.

FORMAT

FILE-CONTROL. <file-control-entrv> ...

and alloldS

The content of the file-control-entrv is dependent upon the
organization of the file named.

PAQE 3t

FORNAT

SELECT file-n•m•

ASSIQN TO device-tvpe, <"exte-rnal-fi le-name">
------ <data-name-1 >

C;OROANIZATION IS SEGUENTIALl

[;ACCESS NODE IS SEQUENTIAL]

[;FILE STATUS IS data-name-21.

The SE.,_ECT clause must· be specified first in the .fi:l• control
entrv. The cl.auses wh~ch fqllow .. t,he SELJ;CT .cl11.use. uv appeal' in
anv order~ ·

Each file described in the Data Division must be named once and
onlv once as f i l,e:name in the .FILE-C.~OL paragrapJ,. Eac.ll, file
specified in the file c,oi,tro.1 ent1-v ,mus\ have a file; d:esc;1r.iption
ent1-v in the Dat• Division.

The ASSION clause specifies the association of the file referenced
bv file-name to a sto-rage medium.

Device-tvpe must
OUTPUT, PRINT, or
pe1'fo.,..med.

be one of the device names INPUT, INPUT-OUTPUT,
RANDON acco-rding to the ope-rations to be

Exte-rnal-file-name specifies the file access name. It can be from
one to thirtv characte.,..• in length and must be enclosed in
,uotation marks. A name longer than thi'l'tV cha-racte-rs will be
diagnosed as an e-rror. The name mav contain anv se~uence of
characters supported bv the operating svstem fo-r file access
names.

Data-name-1 must be defined in the Data Division•• a data item of
categorv alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file ace••• name. Data-name-1 may be ,ualified.

PAOE 37

The ORGANIZATION clause spec i-f'ies the logical structure of a file.
The file organization is established at the time a fiie is created
and cannot subse4uently be changed.

Records in the file
file organization.
predecessor-succeS$0r
execution of WRITE
extend•d.

are accessed in the se4uence dictated by
This se4uenc• is specified

record relationships established by
statements when the file is created

the
bv

the
or

When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEGUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records are
read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clc1use is specified, a value will btt moved by
the operating system into the data item spici,ted l,IJ data-name-2
afte"r, the executjon o,, "everv ~tateaent tbait refe-r:ences ,that file
either explicitlt or implicitltJ. This value indicate~ the status
of execution of the statement.

lfla"ta-n•e-2 must 'be defin"id in the :Data Division :as a
tiwo ... c1taracter data item oi' 'ith·e catego..-v alpltanom•ric 1a-nct must not
be defined. in the File Section. Data-naae-2 •v· b• ,uali~ied.

PME ·39

The Relative File ContT"al EntT"g

FORMAT

SELECT file-name

ASSIGN TO RANDOM, <"exteT"nal-file-name">
<data-name-1 >

;ORGANIZATION IS RELATIVE

[;ACCESS MODE IS< SEQUENTIAL [,RELATIVE KEY IS data-name-2J>J __ ..., ___ _
<<RANDOM}

<<DYNAMIC> ----,--~~-
[;FILE STATUS IS data-name-3J.

--------:-..,_,
,RELATIVE KEY IS data-name-2 >

>

The SELECT clause mvst be sp .. ecified first in the file control
ent-rv. The clauses which follow the .SELECT c1a.1,1se mav app••·,. in
anv order.

Eac.h file de,cTill:ed. i.n theJ)at41; Di.visa" must be naaed. onc.e and
onlv once •• fi le-nt1:•• in th" FILE-CQI\ITRDL para9-raph~ .Et1C·h file
specified in the #ile c~nt,-ol ent-rv must have a fil• descrtption
entrv in the Data Division.

The ASSIGN TO RAN.DOM clause specifies the association of the file
-refe,-enced bt., file-name to a sto-rage medium.

Exte'rnal.-file-n••· specifies the fil• access .. na.me and must be
enclosed in q,uotation ma.-rks. It can be fTom .on.a to thirtv
cha-ractef'S in length. A name lon.ge-r th•n th i -rtv cha-r,actel's wi 11 be
diagnosed as an e-r-ror. The name mav cont•in ilt:l\l chaT'ctcte-rs
suppoTted bV the operating svstem fo-r file access names.

Data-name-1 must be .d•fined in the Data Division as a data item of
categorv alphanume-ric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used•• the file access name. Data-name-1 mav be q,ualified.

PAGE .39

The OROANIZATIDN IS RELATIVE clause specifies the logical
structure of a file. The file organization is established at the
time a file is created and cannot subsequentl9 be changed.

All records stored in a relative file are uniquel9 identi~ied bV
relative record numbers. The relativ, record number of a given
record specifies the record's logical ordiMl position in the
file. The first logical record has a relative record number of one
<1>, and subsequent logical records have relative record numbers
of 2, 3, 4, ... n.

The ACCESS MODE clause specifies the order in which records aTe to
be accessed.

When the ACCESS MODE IS SE8UENTIAL, Tecords in the file are
accessed in the sequence dictated•• the file organization. This
sequence is the o1'der of ascending -relative Tecord numbers of
existing records in the file.

If the ACCESS MODE IS RANDON, the value of the RELATIVE KEV data
item indicates the reco-rd to be accessed.

If • relative file is to be referenced bv a STMT statement, the
RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, recs-rds in the file IN9 be
accessed sequentiall9 and/o-r rando•l9.

Data-name-2 must not
'.associated wt th that
data-name'-2 .·must be
mav be qualified.

be defined in a record description entrv
flfle-name. The data itutm 1'e.Peren1:ed bv
defined as an unsiJned int•1e-r.,, Data-nam•-2

If the ACCESS NODE clause is not specified, ACCESS MODI! IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will
th• ope-ratint •vstem into tie data it.NI s,.ec;ified ,,.,
after tfle exe"Cution ·of everv statement that rttftt1'eflc.es
either ex:plicitlv 01' i•plicitlv. This valt.Je indicates
of •xecution •Of' the stetttment.

l>e moved lu.1
data-namtt-3
that file

that status

Data-name-3 must be defined in the Data Division as a
t1110-cttaracter data i,tea of the catego~v alphanume1'ic and must not
be defined in the File Section.

PAOE 40

The Indexed File Conn-ol Entrv

FORNAT

SELECT file-name

ASSION TO RANDON, <"external-file-name">
------ ------ {data-name-1 >

C;ORQANIZATION IS INDEXED

[;ACCESS MODE IS <SEGUENTIAL)l

<RANDOM >

<DYNAMIC >

C1 ALTERNATE RECORD Kl;Y IS data-name-3 [WITH DUPLICATESll ... --------..... -
[;FILE STATUS IS data-name-4l.

The SELECT clause must be specified first in the file control
ent1"9. The clauses which fol low the SELECT c laus, NI apP:ea1' in
an, o1'der.

Each file described in the Data Division must be named once and
cmlu once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control ent'l"U must have a file
description entrv in the Data Division.

The ASSIQN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in q,uotation marks. It can be from one to thirtv
characters in length. A name longer than thirtv cha1'acters will be
diagnosed as an error. The name may contain anv characters
supported by the operating svstem for file access names.

PAQE · 41

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be def~ned in th• Linkage
Section. Its value at the time of an OPEN statement execution wil 1
be used as the file access name. Data-name-1 may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical st,-ucture
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed.

The ACCESS MODE clause specifies the order in which recot'ds are to
be acc•ssed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated ~y the file ~~ganization. For
indexed files this se,uence i• the order of ascending record key
values within a given key of reference.

If the ACCESS MODE IS RANDOM, the vah1• of the RECORD KEV data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, 1"ecords in the file may be
accessed sequentially and/or randomly.

If the AeCESS MODE clause is not speci'fied, ACCl!SS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record kev that is the prime
record tey for the file. This prime record key provides an access
path to records in an indexed file.

An At..TltRNATE RECORD KEV clause specifies a Pecord ltev that: is an
alte1'nate record kev for the file. This alte-rnate' reco'f"tf tcev
provides an alternate access path to reco,-ds in an indexed file.

The data descri•ption of data-namfi-2 and data-n•me-3 as tdel 1 ••
their relative locations within a record must be the•••• as that
used When the f'ile was cT'eated. The number of altern•te;kevs flor
the file must also be the same as tkat used when• tfle file was
created.

The data items referenced bg data-name-2 and data-name~3 must each
be defined as a data item of the categorv alphanume'f"ic $ithin a
record description entrv associated with that file-name.

Neither data-name-2 no,- data-name-3 can describe an item whose
size is vaPiable.

PAQE 42

Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data-name-2 or bv anv other data-nime-3 associated
with this file.

Data-name-2 and data-name-3 may be ~ualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key mav be duplicated withi~ any of
the records in the file. If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among anv of the records in the fil~

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Dat.a-neme-4 must be defined in the Data Divi~'i;on as a
two-character data item of the category alphanunttt'f"'i c and nu.fst not
be defined "tn i:he File Section.

PAQE '43

The 1-0 CONTROL Pa,-ag.,.aph

The I-0 CONTROL paragraph specifies the memo.,.v a1'ea which is to be
shared bv diffe,-ent files.

FORMAT

I-0-CONTROL.

C; SANE AREA FOR file-name-1 C, file-name-2] ... l ...

The I-0-CONTROL pa1'ag1'aph is optional.

The SAME AREA clause specifies that two o1' mo1'e files a1'e to use
th• •••e memo1'1J a1'ea du1'ing pr.ocessing. The a-rea being sha1'ed
inclucte• all storage area assigned to the files specified;
therefo'l"e, it is not valid to have more than one o.f iihe files open
at the same time.

Mo1'e than one SANE clause tNV be included in a p'l"og,-am; howeve1', a
file-name must not appea,- in mo1'e than one SAIE AREA clause.

The files 1'efe:renced in the SM£ AREA clause need not all have the
same o1'ganization OT' access.

PAQE 44

V

DATA DIVISION

PAQE 45

INTRODUCTION

The Data Division describes the data that the obJect program is to
accept as input, to manipulate, to create, or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and
internal memory of the computer
areas.

enters or leaves the
from a specified area OT'

That which is developed internally
intermediate or working storage, or
format for output reporting purposes.

Constants which are defined by the user.

and
placed

placed into
into specific

The Data Division, which is on• of the re4uired divisions in a
program, is subdivided into three sections:

The FILE SECTION defines the structure of data files. Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the, fil.e description entry.

The WORKING-STORAGE SECTION describes records and
data
also

noncontiguous data items which are not part of exte-rnal
files but are developed and processed internally. It
describes data items whose values aT'e assigned in the souT"ce
program and do not change during the execution of the obJect
prog'ram.

The LINKAOE SECTION in a program is meaningful if and only if
the obJect program is to function under the control o, • CALL
stateaent, and the CALL statement in the calling pT'Og-ra•
contains a USINQ phrase.

The Linkage Section is used for describing data that is
available th-rough the calling program but is to be 'refe-rT'ed to
in both the calling &nd the called p-rog-ram. No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that prograa. Procedure
Division references to these data items are resolved at obJect
time. by e,uating the reference in the c&lled pT'ogT'am to the
location used in the calling progT'am. In the case of
index-names, no such correspondence is established.
Index-names in the called and calling program always refe-r to
separate indices.

PAO! 46

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USINQ phrase of the Procedure Division header or are
subordinate to such operands, and the obJect program is under
the control of a CALL statement that specifies a .USINQ ph'rase.

FORNAT

DATA DIVISION.

CFILE SECTION.

[file-description-entry
Crecord-desc'ription-entryl ... J ... J

CWORKINQ-STORAQE SECTION.

C77-level-description-entT"Vl . .. J
Crecord-descriptian-entrv J

CLINKAQE SECTION.

[77-level-description-entryl ... JJ
[record-description-entry J

FILE SECTION

The File Section heade'I' is followed l>tJ a file desc"rip\ion entr,
consisting of a level indicatoT <FD>, a file-naQte and a series of
independent clauses. The FD clauses specifV the size of the
logical and phtjsical 'l'eco'l'ds, the presence or absence of label
'records, the value of label items, and the names of the data
records which comprise the file. The entr, itself is terminated by
a period.

In a COBOL pTogTam the file description ent'l'V CFO> represents the
highest level or organization in the File Section.

FORMAT

FILE SECTION.

Cfile-description-entrv
CTecord-descPiption-ent•vl ... l ...

PAOE 49

The File Description Entry

The File Description furnishes information concerning the physical
structure, identification, and record name pertaining to a given
file.

FORMAT

FD file-name

£;BLOCK CONTAINS Cinteger-1 TOJ integer-2 <RECORDS >J

<CHARACTERS>

[;RECORD CONTAINS Cinteger-3 TOJ integer-4 CHARACTERS]

;LABEL <RECORD IS) <STANDARD> ------- -------
<RECORDS ARE> <ONITTED>

[;VALUE OF LABfL IS Cliteral-tll ----- --- ------
[;DATA <RECORD IS >

<RECORDS ARE>

data-name-1 t,-ata-name-2l ... l.

The level indicator FD identifies the beginning of a file
description and must precedj the file-name.

The clauses which foflow the name of the file are optional in manv
cases, and their order of appearance is not signifitant.

. . .

One or more reco~d description entries must follow the file
description entrv.

A file d•scription entrv must •nd with a period separator.

PAOE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a phvsical record.

FORMAT

BLOCK CONTAINS Cinteger-1 TOJ integer-2 <RECORDS }

<CHARACTERS>

This clause is required except when:

A phvsical record contains onlv one complete logical record.

The devic• assigned to the file .has onlv one phvsical record
size.

The device assigned to the file has a standar,d record .. size,
al though the device mav have more than on.e ph1,1sic;al T'ecord
siztt. In this case, the absence of this clause denotes the
standard phvsical record size.

...

The size of the ph1,1sical record mav be stated in terms of RECORDS,
unless one of· the following situations exist, in which case the
RECORDS ph'l"ase must not be used:

In mass sto'l"a.ge files where logical reco1'ds m.•IJ extend acT'oss
phgsical 'records.

The phvsical record contains pa4ding.

Logical records are groe.,ped in such .. manner that an
inaccurete phCJsical reco,,-d ,-iztt ..,ould be impli•d~

When the word CHARACTERS is specifie,d, 1;h~ph1Jsical record size is
specified in terms of the number of chaT'~cter positions required
to sto1'e the phvsical record~ regardless of the tvpes of
characters used to represent the it••• within th• physical record.

If onlv integer-2
physic~! reco'l"d.
to the minimum
resp ec ti ve 1 u.

is shown, it represents the exact size of the
If int•ger-1 and tpteger-2 are shown, they refer
and maximum size of the phvsical record,

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data records.

FORMAT

RECORD CONTAINS Cinteger-1 TOJ integer-2 CHARACTERS

The size of each data record is completelv defined with the record
description entrv, therefore this clause is never req,uired. When
present, however, the following notes applv:

Integer-2 mav not be used by itself unless all the data
records in the file have the same size. In this case integer-2
represents the exact number of characters in the data .rec.ord.

If integer-1 and integer-2 are both shown, they refer to the
minimum numbel' of ctutl'acters in the smallest size dat.a vecord
and the maximum numb.er of chari11cte1's in th:e lal'gest ,1ze data
record, respectively.

The size is specified in terms of the number of character
positions req,uired to store the logical record, regardless of
the tvpes of characters used to represent the items within the
logical record. The size of a record is determined bv the sum
of the number of characters in all fixed length elementarv
items plus any fill.er characters gener.ated between elem,nta-ry
items because of the SYNCHRONIZED clause.

PAQE 51

The LABEL RECORD Clause

The LABEL RECORD clause specifies 11.1hether labels are pT'esent.

FORMAT

LABEL <RECORD IS > <STANDARD>

<RECORDS ARE> <OMITTED>

This clause is retuired in everv file description entrv.

STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
svstem specification. STANDARD must be specified for files
assigned to a RANDON device.

OfilITTED specifies that no explicit labels exist fol' t,he file or
the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause particularizes the description of an item in
the label records associated with a file.

· FORMAT

VALUE OF LABEL IS literal-1

This clause is tT'eated as commentarv.

This clause must not be specified if OMITTED is specified in the
LABEL RECORDS clause.

PME 52

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
o.P data records with their associated .Pile.

FORMAT

DATA <RECORD IS >

<RECORDS AR£>

data-name-1 C,data-name-2] ...

Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same name,
associated with them.

The presence of more than one data-name indicates that the .Pile
contains more than one tvpe o.P data record. These records may be
of differing sizes, different formats, etc. The order in which
they are listed is not significant.

Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file.

PAQE 53

WORKINQ-STORAQE SECTION

The Working-Storage Section is composed of the section header,
followed by data description entries for 77 level description
entries and/or record description entries.

The data-name of a 01-level data description entry in the
Working-Storage Section must be unique since it cannot be
qualified. Subordin~te data-names need not be unlque if thev can
be made unique bv qualification.

FORMAT

WORKINQ;..;STORAQE SECTION.

[77-level-descrip~ion-entryl
Crecord-description-~ntry J

L IHKAQE SECT I.ON

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous data items and/or
record description entri••·

Each Linkage Section record-name and noncontiguous item nUte must
be unique within the called program since it cannot be qualifi•d.

FORMAT

LINKAQE SECTION.

------- --------
(77-level-description-entryl
trecord-description-entry J

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the characteristics of a particular record.
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as re4uired.

FORMAT

{data-description-entry}

Level-Numbers

The first data description of a record must have a level-number of
01 or 1, and must start in area A of a source line.

Each data description entry can be subdivided into multiple data
description entries, each having the same level-numberJ which must
be greater ~han the level-number of the subdivided entry, but less
than 50. Level-numbers do not necessarily have to be successive.
Thus, a record is a hierarchy of data description entries.

Elementary Items

Any data description entry which is not further subdivided is
called an elementarv item. A record itself mat be an elementar,
item, consisting of a single level 01 data description entry. A
subdivided data description entry with its subdivisions is called
~ group and is non-elementary. Therefore, a group includes all
group and elementarv items following it until a level-number less
than or e4ual to the level-number of that group is encountered.

Note
onl-.,
thev
must
both.

that ce,-tain t lauses of the data description ent1'-., may occ:u.1'
in elementary items. They may not occul' in O1-level entr-., as
mav affect the subdivisions of that ent1'y. An elementarv item

have either a PICTURE clause or INDEX usage; it may not have

PAOE 55

77 LEVEL DESCRIPTION ENTRY

In the Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries ~hich
are not subdivisions of other items, and al'e not themselves
subdivided. These data description entries specify noncontiguous
data items. Such a data description entrv is elementary.

A 77 level description entrv must contain a data name and either
the PICTURE clause or the USAQE IS INDEX clause, but cannot
contain an OCCURS clause. Other clauses are optional and can be
used to complete the description of the item if necessarv.

FORMAT

data-description-entry

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number {data-name-1}
<FILLER >

[;REDEFINES data-name-2l

[;{PICTURE> IS character-string]

<PIC }

[;[USAGE IS] {COMPUTATIONAL >

<COMP }

{CONPUTATIONAL-1}

<COMP-1 }

(COt'IPUTATIONAL-3)

<CONP-3 > ------
<DISPLAY > ----
<INDEX >]

........... !'W''C\

C;CSIGN ISl <TRAILING> [SEPARATE CHARACTERJJ ________ ..,

[;{OCCURS <integer-1 TINES >
------ ,,(integer-1 TO integer-2 TINES DEPENDlNO ON data-name-3> _..., ______,
[INDEXED BY index-name-1 C, index-name-2] ... ll

[;(SYNCHRONIZED> CLEFT l

<SVNC > tRIGHTll

PAGE .57

C;<~USTIFIED> RIGHTl

{~UST >

[;BLANK WHEN ZEROl

[;VALUE IS literal]

FORMAT 2

66 data-name-1; RENAMES data-name-2 [<THROUGH} data-name-3l . .. _. ... ____ _
<THRU >

FORMAT 3

88 condition-name; {VALUE IS > literal-1 [{THROUGH> literal-2l
-~--- -----~-

<VALUES ARID- <THRU }

-CTHRU)

The clauses NIJ be written in anv order with two exceptions:

the data-name-1 or FILLER clause must immediatelv follow the
lave 1-numbet";

the REDEFINES clause, when used, must immediately follow the
da~a-name-1 clause.

The PICTURE clause mvst be specified for eve-rv elementary item
except an index data item, in which case use of this clause is
prohibited.

The words THRU and THROUQH are e,uivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except flor an ttlementartJ data item.

PAGE 58

Format 3 is used for each condition-name. Each condition-name
re~uires a separate entry with level-number 88. Format 3 contains
the name of the condition and the value, values, or range of
values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated. A condition-name can be associated with any data
description entry which contains a level-number except the
following:

Another condition-name.

A group containing items with
JUSTIFIED, SYNCHRONIZED or USAGE
DISPLAY>.

An index data item.

A level 66 item.

descriptions
(other than

including
USAGE IS

Each data description entry must end with a period separator.

PAGE 59

The level-number shows
record. In addition,
storage items, linkage
clause.

FORMAT

level-number

the hierarchv of data within a logical
it is used to identifV entries for working
items, condition-names and the RENAMES

A level-number is required as the first element in each data
description entrv.

Data description entries subordinate to an FD entrv must have
level-numbers with the values 01 through 49, 66 or 88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values 01 through
49, 66, 77 or 88.

The level-number 01 identifies the first entrv in each record
description.

Level-number 66 is assigned to identifg RENAMES entries.

Level-number 77 is assigned to identifg noncontiguous working
storage data items and noncontiguous linkage data items.

Level-number 88 is assigned to identifV condition-names associated
'With • conditional variable.

Multiple level 01 entries subordinate to anv given level indicator
FD, represent implicit redefinitions of the same area.

The Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The
word FILLER specifies an elementarv item of the logical record
that cannot be referred to explicitv.

FORMAT

<data-name}
<FILLER >

A data-name or the kev word FILLER must be the first word
following the level-number in each data description entry.

The kev word FILLER mav be used to name an elementary item in a
record. Under no circumstances can a FILLER item be referred to
explicitly. However, the key word FILLER may be used as a
conditional variable because such use does not re,uire explicit
reference to the FILLER item, but to its value.

The key word FILLER may not be used in data description entries
with a 1, 01, 77, or 88 level-number.

PAQE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by dif,erent data description entries.

FORMAT

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are shown in
the above format to improve clarity. Level-number and
data-name-1 are not part of the REDEFINES clause.

The REDEFINES clause, when specified, must immediately follow
data-name-1.

The level-numbers of data-name-1 and data-name-2 mus~ be identical
but must not be 66 or 8 •.

This clause must not be used in l.evel 01 entri11s in .the File
Section.

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subo1'dinate to an ent1'y which
contains a REDEFINES clause. The data description entrv for
data-mitme-2 cannot contain an OCCURS clause. Holllever, data-name-2
may be subordinate to an item whose data description entTy
contains an OCCURS clause. In this case, the reference to
data-nam.e-2 in the REDEFINES c lau-.e 8.lfllJ not be suttscr/ipted or
indexed. Neither the o1"'iginal definition nor the T'edefi.nition ca.n
include an item whose size is val'iabl• as defined in the OCCURS
clause.

No entT'y having a level-numbel' numerically lo11Je1"' than the
level-number of data-name-2 and data-name.-1 mag occu,- between the
data description entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number
less than or e4ual to that of data-name-2 is encountered.

When the level-number of data-name-1 is othel' than 01, it must
specifv the same number of character positions that the data item
referenced by data-name-2 contains. It is important to observe
that the REDEFINES .clause specifies the T'edefinition of a stoT'age
area, not of the data items occupying the area.

PAO£ 62

Nultiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions. Nultiple redefinitions of the same character
positions must all use the data-name of the entry that originally
defined the area.

The ~ntries g1v1ng the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries.

Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general characte-,.istics and
editing requirements of an elementary item.

FORMAT

<PICTURE> IS character-string

{PIC >

A PICTURE clause can be specified onlv at the elementarv item
level.

A character-string consists of certain allowable
characters in the COBOL cha-,.acter set used
allowable combinations determine the category of
item.

combinations of ,
as symbols. The

the elementary

The maximum number of characters allowed in the character-string
is 30.

The PICTURE clause must be specified for every elementarv item
except an index data item, in which case use of this clause is
prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause:

alphabetic
numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the symbols 'A',
and/or 'B '.

Its contents when represented in standard data format must be
any combination of the twenty-six <26) letters of the Roman
alphabet and the space from the COBOL character set.

PAQE 64

To define an item as numeric:

Its PICTURE character-string can only contain the symbols '9',
'P', 'S', and 'V'. The number of digit positions that can be
described by the PICTURE character-string must range from 1 to
18 inclusive; and

If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals '0', '1 ',
'2', '3', '4', '5', '6', '7', '8', '9'; if signed, the item
mav al so contain a '+ ', '- ', or other representation of an
operational sign.

To define an item as alphanumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'X', '9', and the item is
treated as if the character-string contained all X's. A
PICTURE character-string which contains all A's or all 9's
does not define an alphanumeric item; and

Its contents, when re,resent•d in standa-rd data format, are
alloflHlftile cha-ratters i\n the contpute.,.~• 0 character set.

To define an itetlt a• alphanumeric edited:

Its PICTURE charaoter-string is
combinations of the following symbols:
'0', and'/' (stroke);

rest?icted
'A', 'X',

to ce?tain
'9', 'B',

The character-string must contain at least one 'B' and at
lea•t on• 'X'·OT' at 1ealt ene:'Q1 <zet'o) and at least one 'X'
of at least on• 'I' <stroke> and at least one 'X'I or

The character-string must contain at least one '0' (zero) and
at lea•t one 'A' -or at-least one '/' (st-role> and at least one
'A's ··and

The contents when represented in standard data format are
allowable characters in the computer's character set.

PAOE 65

To define an item as num•ric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'B', '/' <stroke>, 'P',
'V', 'Z', '0', '9', ', ', '. ', '*', '-', '+', 'CR', 'DB', and
the currency symbol. The allowable combinations are determin•d
from the order of precedence of symbols and the editing rules,
and

The number of digit positions that can be represented in the
PICTURE character-string must rant• from 1 to 18 inclusive;
and

The character-string
< s tr o lee >, 'Z ', '* ',
currency svmbol.

must contain at least one '0',
'+', ', ,, '. ,, '-', 'CRl,

'BI,
'DB',

I I'
or

The contents of the character positions of these symbols that
cn•e allowed to represent a digit in standard data format, must
be one ef the numerals.

The size of an elementary item, where size means the number of
character positions occupie4 by the elementarv item in standard
data format, is dete,-mined bv the numbe,- of allowable .svmbols that
represent character positions. An integer which is enclosed in
pa.,.entheses following the •vmbols 'A', ', ', 'X', '9', 'P', 'Z',
'*', '8', 'I' <st,-ofce>, '0', '+', '-', or the cvri-encv symbol
indicates the number of consecutive occul"rences of the sv•bol.
Not• that the following sumbols may app11ta1' onltJ:,,onc• ita a giv•n
PICTURE: '8', 'V', '. ', 'CR', and 'DB'. .

The functions of the svmbols used to desc,-ibe an •l•m•ntarv it••
a1'e explained as follows:

Each 'A'
position
space.

in th• c.t,aracta,--Jtring .,.epresents a ,d,aracter
which can contain onlv • letter of the aJ.ph •. bet or a

Each 'B' in the chal"ac te,--st'f"ing represents a character
position into which the space character will b• inse-,ted.

PAOE 66

Each 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in the
size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18) in
numeric edited items or numeric items. The scaling position
character 'P' can appear only to the left or right as a
continuous string of 'P's within a PICTURE description; since
the scaling position character 'P' implies an assumed decimal
point <to the left of 'P's if 'P's a1'e leftmost PICTURE
characte1's and to the right if 'P's are rightmost PICTURE
characters>, the assumed decimal poin~ symbol 'V' is redundant
as eith•r the leftmost or rightmost character ~ithin such a
PICTURE description. Tb.e characteT' 'P' and the insertion
characteT' ' ' (period> canru,t both occuT' ,in the same PICTURE
characteT'-S~T'ing. If, in anv operation involving conversion of
data from one fo1'm of internal representation to anotheT', the
data item being conveT'ted is described with the PICTURE
characteT' 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size o~ the data
item is considered to include the digit positions so
described.

-
The ltttteT' 'S' is used in a chaT'acteT'-string to intU,cate the
presence, but neither the representation nor, nec~ssarily, the
position of an ope'P.ational sign; it mu9t be written as the
leftmost Gltaratcter in the PICTURE. The '$' is counted in
deteT'mining the size (in terms of standard data foi-mat
characters> of elementaT'v items having DISPL,AV or
C0'1PUTATIONAL usage. . .

The 'V', is used in a character-string to ind.icate .the location
o.f the asstJmed dee imal point and mav .only .appttar or1ce ha a
character-s,tring. Tft.e 'V' does not re.pres,nt ,a c.haracte:r
po,ition and therefoT'e is 11ot counted in the size of the
elementarv item. When the assumed de~imc1Jl ;e.ohrts i~ to tbe
right of the 'rightmost symbol in the strin.g the 'V' is
T'edundan.t.

Eac.h 'X' in the character-,string is used to 'represent a
chaT'acteT' position which contains any allowabl.tt character from
the computeT''s character set.

Each 'Z' in a chaT'acter-string may onlv be used to represent
the leftmost leading numeric character positions which will be
'replaced by a space characteT' when the contents of that
character position is zero. Each 'Z' is counted in the size of
the item.

PAOE 6."'l

Each '9' in the character-string represents a character
position which contains a numeral and is counted in the size
of the item.

Each '0' <zero) in the character-string represents a character
position into which the numeral zero will be inserted. The '0'
is counted in the size of ~the item.

Each '/' <stroker in the character-string represents a
character position into which tbe strdke character will be
inserted. The '/' <stroke> is counted in the size of the item.

Each I I ,
cha?acter
inserted.
the item.
character

<comma> in the character-string
position into which the character

This charafter position is counted
The insertion tha1"acter ', ' must not
in the PICTURE character-string.

l"epresents a
',' will be

in the size of
be the last

When the cbaracter ' ' (period) appears in the
character-stl"'ing it is an editing sv,nbol which l"'epre1tents the
decimal point for alignment purposes and in addition,
repPesents a character.position iftto which the character ' '
will be inserted. The character '.' is countttd in the size of
the item. Fol" a given program the functions of the peTiod and
co,it;na are· exchanged if the clause DECIMAL-POINT IS COMNA is
stated in the SPECIAL-NAMES pa1"agraph. In this exchange the
·.,.ules for the period applv to the comma and the·?ules for the
colftlfta app 19 to ttt• pel"tod wherever theg app'ear Ut • PICTURE
clause. The insertion character ' ' must 1u1t be the last
chel"acte'P in the PICTURE charatter-strfng.

+, -, CR, DB. These symbols are used as editing sign control
symbols. Whfn used, thev 'tepr-esent the c'hat-act•r po.-i tion into
which the editing sign contt-ol symlol will be placed. The

'symlols at-e mutually exclusive in an" ewe chat-act•-,. .. stt-ing and
each characte-r ried" in tfte sv,nbol is count'8-d in· determining
the size -Of the data item.

Each '*' (aste-risk > in the characte1'-st1'i#g ;?•presents a
leading nu,neric character position into which an aste?isk will
be placed when the contents of thctt position is ze'f"o.' Each '*'
is countel in the size of the item.

The asterisk when used as the zel"'o suppression symbol and the
clause 11..ANK WHEN ZERO may nat appear in the same entrv.

PAE 68

The currencv svmbol in the character-string represents•
character position into which a currencv svmbol is to be
placed. The currencg symbol in a character-string is
represented bv either the currencv sign or bv the single
character specified in the CURRENCY SIQN IS clause in the
SPECIAL-NANES paragraph. The currencv svmbol is counted in the
size o, the item.

There are two general methods of performing editing in the PICTURE
clause, either bv insertion or by suppression and replacement.
There are four tvpes of insertion editing available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two tvpes of suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and re9lacement with asterisks

The tvpe of editing wbich ••v be performed upon i1n item is
dependent upon the categorlJ to which the item belongs. The
following table specifies which tgpe of editing aav be performed
upon a given categorv:

ICATEOORY TYPE OF EDITINQ 1~~----~---~---------~-~~~~---------·--------~-~~------1
I Alphabetic Simple insertion 'B' onllJ
:---------------... -~--.... ---... ~-,...--~~-------r-:----~----------------J
INuaeric None
1-------------~---9'.""---------~~----.... ------------~-=--.... --~---... --1
I Alphanumeric None
1-~-~----------------~--~-~~--------~--~------------~ ... ~,
&Alphanumeric
IEdited

Simple insertion '0', 'B',
and '/' <stroke> 1-------------------------~----------------~----,-----,.---.,

:Numeric
IEdited

All, subJect to rules below .

Floating insertion editing and editing bv zero suppression and
replacement are mutuallv exclusive in a PICTURE clause. Onlv one
tvpe of replacement mav be used with zero suppression in a PICTURE
clause.

PAGE 69

Simpl• InseT'tion Editing

The ',' h:o .. a>, 'B' (space>, '0', <zel'o), and '/' <stT'oke) t1T"e
used as th• insertion chal'actel's. The in•e~tion clatacters aT"e
counted in the size of the item and represent the position in the
item into which the chaT'acter will be insel'ted.

Special lnse,-tion Editint

The ' ' (period) is used as the insertion ch,a,-a.ctel'. In addition
to being an insertion characte1" it also repT"esents the decimal
point for alignment pu-rposes. The inse-rtion charact•-r used for the
actual decimal point is counted in the size of the item. The use
of the assumed decimal point, represented blJ the SIJdlbol 'V' and
the actual decimal point, T'epT'esented by the inset'tion chaT'acteT',
in the same PICTURE characte,-..,.string is disallowed. The T'eault of
special inse-rtion editing is the appearance of the insel'tion
charactel' in tll:e item in th• seme position as shown in the
chaT'acter-stT'ing.

Fixed Insel'tion Editing

The cuT'l"enctJ svabol and the edi ti.t1g si9n cont•ol •v•bohh '+ ',
'- ', 'CR', 'DB', al'e the insel'tian chal"actet's. Only on• currencv
svmbol and 1>nlv one of the edit:ing si1n contl'ol symbols can be
us•d in a given PIC1'URE'. cha1'acter•st1"i.ng. When the •v•cns 'CR' 01'
'08' a1'tr u•-•d · the9 1'ep.-esent two chal"actel" positions i'n
dete"raining the size oft the · item and they must 1'ftp1'esent t.he
l'ightmost chaN1ctel' positions that al"e counted in the size of the
item.

Ttte symbol '+., 01' '-', when uslfd, must be eithe.,. the leftmost 01'
ri1htmost character po•ition to be counted in the size of the
item.

The currencv symbol must be the.leftmost charactel" position to be
counted in the size of the item except that it can be preceded by
eithel' a '+' or a ,_, symbol.

Fixed insertion editing results in the
occupying the same character position in the
occupied in the PICTURE character-stl'ing.

PA&E 70

insel'tion cha1"acte1'
edited item as it

Editing sign control svmbols produce the following results
depending upon the value of the data item:

--~-------------I EDITINQ SYNBOL IN RESULT
I PICTURE 1-----------------------------~~-J
I CHARACTER-STRINQ DATA ITEN I DATA ITEN
I I POSITIVE OR ZERO I NEGATIVE
1--~--~-----------~--1------~-----------1-----~-------r

+

CR
DB :

Floating Insertion Editing

+
space

2 spaces
2 spaces

':
CR
DB

The currencv svmbol and editing sign cont'f'ol SIJmbol s, '+' oT' '- ',
are the floating inseT'tion character's and as such are mutualllJ
exclusive in a given PICTURE chaT'acter-string.

Floating insertion editing is indicated in a PICTURE
characteT'-string bv using a string of at least two oft the floating
insertion characters. This stT'ing of floating inseT'tion characters
mav contain anv of th.e fixed insertion svmbols OT' have. fixed
insertion characters immediatelv to the ri9ht of this stT'ing.
These simpJe insertion chaTacte'l"s at'e pat't of the floating string.

The leftmost character of the floating insertjon string represents
the left• ost li• it of the floating •v•bol in t.he 4aJa it••· The
'l"ight• ost charactel' of the floating stl'ing re.presents the
right• ost li• it of the floating symbols in the data items.

The second floating character fT'om the left repTesents the
left• ost limit of the nu• e'l"ic data that can be stored in the data
item. Nonze'l"'o nu• eric d.ata mav T'eplaceall the characters at OT' to
the l'it~t of t~is limit.

In a PICTURE chaTacter-string, there are onlv two ways of
1"'ep,-esenting floating insertion editing. One ••vis to represent
anv or all of the leading nu• eric character positions on the left
of the d.ec i • al point bv the insertion character. The other wav is
to l"ep'l"esent all of the numeric character positions in the PICTURE
chaT'.actel'-stT'ing bv the inse'l"tion ch.ar.acter.

PAOE 71

If the insertion cha;racters are only to the left of the decimal
point in the PICTURE character'--st1"ing, the result is that a single
floating insertion character will be placed into the character
position immediatelv preceding either the decimal point or the
first nonzero digit in the data 1"ttpresen·ted tav the insertion
svmbol string, whichever is farther to the left ·in the PICTURE
character-string. The character positions preceding the insertion
character are replaced with spaces.

If all numeric chaT'acter positions in the PICTURE cha1'acter-st1"ing
aT'e represented bu the inseT'tion character, the result depends
upon the value of the data. If the value is zero the entire data
item will contain spaces. If the value is not zero, the result is
the same as when the insertion characteT' is only to the left of
the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of
non-floating insertion characters being edited into the receiving
data item, plus one flor the floating insertion character.

Zero Suppression Editing

The supp1'ession of leading ze-roes in numeric cha-ract•i"' positions
is indicated bv tfle use of the alphabetic characte:r 'Z' 01" the
charactel' '*' (a'sterisk> as supp,-ession svmbbls in a PICTURE
cflaracter-string. These svmtaols are ,nutuallvexclv•ive in a given
PICTURE chal'acter-stl'ing. Each suppression svmbol is counted in
tJ•termining the size of the item. If 'Z' is•v••d the -replacement
character will lte the: space and if the asterisk is used. the
replacement che?acte-r will be '*'·

In a PICTURE character-st1"ing, there are onlv two wa~• of
representing zero suppression. One wav is to Tepresent anv o-r all
of the leading nume!f'ic cha1"acter positions;to the left of the
decimal point ttv suppl"ession svmbvls. The other wav is to
1"ep1"esent all of the numeric characte1" positions in the PICTURE
cha1"acte1'-string bv supp1"ession symbols.

If the suppression svmbols appear ontv to the left of the decimal
point, anv leading zero' in the data which corresponds to a svabol
in thit st-ring is rep,laced by the replacement character.
Bupp-ress ion te1'mi nates at the f.i,1"st nonzero d it it in tfte data
T'epresented bg the suppression sQmtaol string or at the decimal
point, •hichever is encountered fiTst.

PAGE 72

If all numeric character positions in the PICTURE character-string
are represented bv suppression svmbols and the value ofl the data
i"s not zero the result is the saate as ifl the suppression
characters were onlv to the left of the decimal point. If the
value is zero and the suppression svmbol is 'Z 1 , · the enti'f'e data
item will be spaces. If the value is zero and the suppression
symbol is '*', the data itttm will be all '*' except for the actual
decimal point.

The symbols '+', '-', '*', 'Z', and the currencv svmbol, when used
as floating replacement characters, are mutually exclusive within
a given ~haracter-string.

The picture precedence chart shows the order of precedence when
using cha1'acte1"s as symbols in a chaT'acter-string. An 'X' at an
intersection indicates that the symbol<•> at the top of the column
mav precede, in a given characte1'-St1"ing, the svmbol<s> at the
left of the T'OW. A1'guments appeaT'ing in braces indicate that the
svmbols are mutuallv exclusive. The curT'encv svmbol is indicated
bv the svmbol 'cs'.

At least one of the svmbols 'A',
least two of the svmbols '+',
PICTURE st1'ing.

'X', 'Z', '9', or '*', or at
'-', or 'cs' must be present in a

Nonfloating inse1"tion svmbols '+' and '-', floating insertion
svmbols 'Z', '*', '+', '-', and 'cs', and other S1Jmbol 'P' appear
twice in the PICTURE characte'f' precedence cha'rt. The leftmost
celvmn and uppermost row fol' each svmbol represents its use to the
l•ft of the decimal point position. The second appearance of the
svmbol in the chart T'epresents its use to the right of the decimal
point position.

PAOE 73

-------~-~-----------------------------------~~~----~-~-~-----~---~---
Non-Floatint

Insertion svmbols
Floating

Insertion svmbols
12nd\boll----------~--------------:-------------•---~---:-~~--------
ISvm-\ 111O1/1 'I. l<+>l<+>l<CR>ICSl<Z>l<Z>l<•+>l<+)ICStC8191AJSIVIPIP
I bol \ I I I I I l<->l<->l<DB)t l<*>l<•>l<->l<->I I l IXI I I I
1-:---------I ------------.~----... --~--· I ----.... ------------.--------1----------..----
l I 8 IXIXIXIXIXI XI I XI X IX IX IX t XI XIXIXI JXI 1,
: 1---~-1-------~~-----------~----:------------~---~~---1-----------
I I O IXIXIXIXIXI XI I XI X IX f XIX J XI XIXIXI IXI 1, IN 1---...--1---------~----------,..-----... 1----............. _ ... _________ ~_---I'~--------
IOI / IXIXlXIXIXI XI I XIX IX 1 XIX I XI XIXIXI IXI IJ
INl---~-1--------~----------~----:---~--------~--------1-----------
IFI , IXIXIXIXIXI X I I XIX IX IX IX I XI XIXI I IXf IJ
ILl----1----....-~---------~---~----1------~,~~---------1~~-----~--
IOI IXIXIXIXI I XI I XI X I I X I I XI fXI I I I I
IAl-----:~--~----~----------------1--~~----------------~:~----------
ITI + - I I I I I I I I I I I I I

IIJ-----1--------~-~----~---------1--~------------------1-----------
INI + - IXIXIXIXIXI I XI X I X I I XI XIXI I IXIXI~
IQl-----l-----------------------:---------------------1--------~--
I ICR DBIXIXIXIXIXI IXIXIX·J I XI XIXI I IXIXI~
I 1-~---1---------~------------~•-1--~------------------1-----~~-....
I I CS I I I t I I X I I t I I I I

1-1-~---1-~---------------------~-1---------------------1-----------
I I Z * IXIXIXIXI IX I I XI X t I I llllll

I l----~1-~--~------~---~----~~--1-----------------~--1~~---------
IFI Z * lXIXIXtXIXI X l I XI X I X f t I t ,, I ex: IX

IOI+ - IX1XIXJXt I I XI t X I I I I I I I

ITI + - IXIXIXIXIXI I XI I X I X I I I t IXI IX
:11---~-1----~--~~-----~------------1---------~--~------~-1----~----~-
INI CS tXIXIXIXI IX I I I XI I I I I I I

101~-~--1--~-----~--~--------------1---------------------1~--------~-
I I CS IXIXIXIXIXI XI I XIX I I I IXI IX

:-1-----1--------------------~-----1~--------------------:----~~~---~ f I 9 fXfXIXIXIXI XI I XI X I I X I I XI IXIXIXIXI IX
I 1-----1------~------------------:--~-------------~~-~-1-------~---
I I AX IXIXtXI f I IXIXI I I I
101---~-1--~-----~-----------------1-------------~-~-~---1-------~~~-
ITI S J I I I I I I I I I I I

IHl-----1--------~---~------------1-----------------~---1----------
IEI V IXIXIXIXI I XI I XI X I I X I I XI IXI IXI IXl

IRl-----1-------------------------1---------~----~----~1----~------
I I P IXIXIXIXI IX I I XI X I I X I I XI IXI IXI IXJ
I l---~-1--~----------~~----------1------------~~-------1--~--~----~
II P IIIIIIXI I XI I I IXIXI IX
----~--------~----------------------~------------------------~-----~

PICTURE ChaTacteT Precedence Chart

PAO£ 74

The USAQE Clause

The USAQE clause specifies the format of a data item in the
computer storage.

FORMAT

tUSAQE ISl <COMPUTATIONAL >

<COMP }

<COMPUTATIONAL-!}

<COMP-1 >
<COMPUTATIONAL-3}

<COMP-3

<DISPLAY .,..,.._ ____ _
<INDEX

>
}

>

This clause specifies the manner in which • data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the Procedure Division mav restrict the USAQE clause
of -the operands referenced.

The USAGE clause can be written at anv level. If the USAQE clause
is written at a group level, it applies to each elementarv item in
the group. The USAQE clause of an elementarlJ item cannot
contradict the USAGE clause of a group to which the item belongs.

If the USAQE clause is not specified for an el•mentarv item, or
for anv group to which the item belongs, the usage is implicitlv
DISPLAY.

A COMPUTATIONAL <COMPUTATIONAL-!, COMPUTATIONAL•3> item represents
a value to be used in computations and must be num•rtc. If a group
is described as COMPUTATIONAL, then the elementarv items in the
group are COMPUTATIONAL. The group itself is not COMPUTATIONAL
<cannot be used in computations. >

PAQE 75

The format of a CONPUTATIONAL item is one decimal digit per
character position (heu1decimal 00-09). If an 'S' appears in the
PICTURE character-string, a trailing bvte contains the sign with
> 2B being generated for positive and> 2D being generated for
negative. CONPUTATIONAL items will be trectted as negative if the
sign character is > 2DJ otherwise thev will be considered
positive.

The format of a CONPUTATIONAL-1 item <abbreviated COMP-1> is 16
bit two's complement signed binarv, independent of the number of
nines or appearance of 'S' in the f:»ICTURE cha1'acte.r-string. The
number of nines is significant when th.e value is conve1'ted to
decimal during data manipulation. The value of a CONPUTATIONAL-1
item ranges between -32768 and 32767.

The format of a CO"PUTATIONAL-3 item is two decimal digits per
character position.

The PICTURE character-string of a COMPUTATIONAL, COMPUTATIONAL-1
or COMPUTATIONAL-3 item can contain onlg '9's, the operational
sign character 'S', the implied decimal.point character 'V', one
or more 'P's. Since a CONPVTATIONAL-1 item must have zero scale it
cannot contain anv 'P's in its PICTURE .character string and if it
has a 'V' in its PICTURE character-string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII.

An elementarv item descT'ibed with the USAGE IS INDEX clause is
called an index data item and ~ontains a v,alue whic .. h must
correspond to an occurrence number of a table element. If• f1"0up
item .i.s ,desc1"ibed with the U~~&: 1.S JNDEX c,la,v~• \lte ~,lementarv
items in the 1roup are all ind ea d.ata but the 9ro.A4p, item name
cannot be used in the SET statement or in a -relation condition.

' ' 'j

An index data item can be refeT'enced explicitly only in a SET
statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, ~USTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clause, cannot be used to describe gT'oup or elementari:, items
described with the USAQE IS INDEX clause.

An index data item c•n be pa1"t of a gToup whic.b is T'efeT'red to in
a MOVE or input-output statemeflt, in which case no conversion will
take place.

The exteT'nal and inteT'nal foT'mat of an index data item is the same
as a COMPVTATONAL-1 item.

PAOE 76

The SION Clause

The SIQN clause specifies the position and the mode of
representation of the operational sign when it is necessary to
describe these properties explicitly.

FORMAT

CSION ISl {TRAILINO> [SEPARATE CHARACTERJ

The optional SION clause, if present, specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SION clause applie• only to numeric dat• descTiption
entries whose PICTURE contains the character '8'.

The operational sign will be presumed to be the trailing character
position of the elementary numeric data item; this character
po11ition is not a digit position.

The letter '8' in a PICTURE chat'acter-stl'in9 is counted in
determining the size of the item (in terms of standard data format
cha1'acte1"s >.

The op•rational signs for positive and negative al'e the standard
data format characte-rs "+' and '-', -respectively.

The nume1'ic data description entries to which the SION clause
applies' must be described as usage is DISPLAY.

At most one SION clause may applv to any given nume-ric data
description entry.

PAOE "R

The OCCURS Clause

The OCCURS clau•e eliminates the need
re9eated data items and supplies
application of subscripts or indices.

FORNAT 1

OCCURS integer-1 TINES

for separate entries for
information re~uired for the

[INDEXED BY index-name-1 C,index-name-2J ... J

FORNAT 2

OCCURS integer-1 TO integer-2 TI.11&8 DEPENDINQ ON data-name-1 __ __,,..., _____ _
[INDEXED BY index-name-1 C,index-name-2] ... J

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data item•. Whenever the OCCURS c 1a·u.se' i .. s used,
the da"a:-name which is the subJec:t of this entr4J must be. eitheT'
subscripted or indexed whenever it is refeT'red to in a statement.
FuT'theT', if tlae subJect of this entNJ is the name of a gT"Oup item,
then all data""1la11•• belonginr t.o the ·1roup must •• sub-scriptttd 01"
indexed wheneveT' thev are use4 as oper•nds, except as. the t1:bJect
of a REDEFINES clause.

Tit• OCCURS clause cannot be specjfied in • d.ata. des~riptaqn ent1"V
that:

Has an 01, 66, 77, OT" an 98 level-number.

Desc1"ibes an item whose size is vaT'iable. The size of an item
is va-riable if the data description of anv subordinate item
contains Format 2 of the OCCURS clause.

Except for the OCCURS clause itself, •11 data description clauses
associated with en item whose description includes an OCCURS
clause applv to each occurrence of the item described.

The nu••er of occurrences of the subJect entrv is defined as
follows:

In Format 1, the value of integer-1 represents the exact
nuaber of occurrences.

In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

This format specifies that the subJect of this entry has a
variable number of occurrences. The value .of integer-2
represents the maximum number of occurrences and the value
of integar-1 represents the minJm~m number of occurrences.
This does not imply that the length of the subJect of the
entry is variable, but that the number of occurrences is
variable.

The value of the data item referenced by data~name-1 must
fall within the range integer-1 thro~gh integer-2.
Reducing the value of the data item referenced by
data-name-1 makes the contents of data items, whose
occurrence numbers now exceed the value of the data item
~ef,T'anced b9.data-name-1, unpredictabltt~

Where both integer-! and integer-2 are used, .the value of
integer-I must be less than the value of integer-2. ·

The data description of data-name-1 must describe a
positive integer. Data-name-1 mav be ,ualified.

A ctata desc1'iption entrv tltatcontains Fo1'mat 2 of the
OCCURS clau•• may onlv be followed, within that record
--••c1'iption, bv dat1t c(escription entries which a1'e
,ubor.-inat• to it.

When a group t~.••• h~v.ing su.bo,:-dinate to it an ent1'.V that
specifies Format 2 of the OCCURS clause, is reference.ti, onlv that
pa1't ,ot th• t;alt!•· a1'•a . th4llt is .specified bv <;tbe v.al.u• of
data-name-1 will be .u••d in the opei-.tion.

An INDEXED BY phrase is ;rect,viPecl; i,f p.the sub.aect of this entrv, 01'
an ent1"V suboT'dinate to this · entry, is to be refer-re.d to bV
indexing. The index-name identified by this clause it not defined
elsewhf1'e since its allocation and fo,-m•t are dependent on the
h4111'dwa1'e, and not being data,; cannot be associated with ••nv data
h~erarchv. ·

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an >elementarv
item on an even byte boundary.

FORMAT

<SYNCHRONIZED> CLEFT J

<SYNC > [RIOHTJ
------- --------

This clause specifies that the subJect data item is to be aligned
in the computer such'that no other data item occuJies any of the
character positions between the leftmost and rightmost natural
boundaries delimiting this data item. If the number of character
positions re\uired to stoT'e this data item is less than the number
of chaTacter positions between those natural boundaries, the
unused chaT'acteT' positions <or portion- the1"eof)~mtis••riot be used
for any other data item. Such unused character positions, however,
are included in:

The size of any group item(s) to which the elementary item
belongs, and

The character positions redefined when this data i~•• is the
obJett of a REDEFINES clause. " "'

SYNCHRONIZED LEFT SfUtcifies that the elemefttilT'V itiem is to be
positioned such that it will betin at the le#t'''Cba1"aetfr position
of the next available evttn bvt:e. If the data item contains an odd
numlt,e? of b9tes, one trailing ttfitt ,, F'ILLER':t, 'i,apl it!'tl.

' ,,, <

SYNCHRONIZED not followed by either RIOHT or·LEFT is,iqufvalent to
the clause SYNCHRONIZED't::.EF'T. ~ '•

SYNC ;!,s an abbreviation fot' SYNCHRONIZED.

This clause ••V;'onlv appear ,,lftli 'an t?lementaTy itenL

::sYNCHROMIZEDqRIOHT specifies that the elemintaTIJ item is to be
positioned such that it ~ill terminate on the rigHt ch•r4cteT'
position of an integN1l even bvte boundarv. If the data item
contains an odd number of bvtes, a leading byte of FILLER is
implied.

PAOE 80

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE clause, is
used in determining any action that depends on size, such as
Justifiction, truncation or overflow.

If the data description
clause and an operational
the normal operational
item is SYNCHRONIZED LEFT

of an item contains the SYNCHRONIZED
sign, the sign of the item appears in
sign position, regardless of whether the
or SYNCHRONIZED RIQHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or in a
data description entrv of a data item subordinate to a data
description entrv that contains an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

AntJ implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
items.

Recol'ds of a file and index data items. al'e automaticallv
svnchronized left. Records and noncontiguous data-items in
woTking-storage begin on the next available byte unless the first
elementarv item is synchronized.

The format on external media of records or groups containing
elementa,., items: desc,-tbe.d with the SYNCHRONIZED clause includes
anu imp 1 ied FILLER bv tes.

When the da.ta item p'l"ttCttding a dat.a item tlescribe11 with the
SYNCHRONIZED clause doe11 not terminc1te on a byte i.those address is
even, then one implied FILLER byte is generated. Such
automatical lv generated FI.LLER positions :a-re in:c l'uded in:

The size of anv group to which the FILLER item belongs; and

The number of character positions aliocated i.then t-e group
item of which the FILLER item is a part appears as the obJect
of a REDEFINES clause.

PAOE
/

Bl

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data
within a receiving data item.

FORMAT

<JUSTIFIED> RIOHT

{JUST }

When a receiving data item is described with the JUSTIFIED clause
and the sendint data item is larger than the receiving data item,
the leftmost charact•1'·• are t1'uncated. When the receiving data
item is descrUted with the JUSTIFIED clause and it is la-rger than
the sending data item, the data is aligned at the rightmost
character position in the data item with space-fill fol" the
leftmost character positions.

When the .JUSTIFIED clause is omitted, the standard 1'Ules fo,
aligning data within an elementarv item applv.

The JUSTIFIED claus• cannot be · specified fo'I' allv 'data item
descT"ibed as nume1"ic o..- fo'I' which editing is spet~fieid.

The JUSTIFIED e:,lause c•an be sp11ci.P,ied onl•1 ,at the el•mentat"v: item
level .

.JUST is •n abllrv¥iai;)ton fo1" JUSTIFIED.

Th• BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking o, an item when
its value is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used onlv for an elementary item
whose PICTURE is speci,ied as numeric or numeric edited.

The BLANK WHEN ZERO clause cannot appear in the same entrv with a
PICTURE clause having an asterislc as the zero suppression svmbol.

When the BLANK WHEN ZERO clause is used, the it•m will contain
nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric, the categorv of the item is considered to be numeric
edited.

The VALUE IS Clause

The VALUE IS clause de.Pines the initial value of working storage
items, and the values associated with a condition-name.

FORMAT 1

VALUE IS literal

FORMAT 2

{VALUE IS > literal-1 [{THROUGH> literal-2J ----- -------~
<VALUES ARE> <THRO)

C, literal-3 [{THROUGH> literal-4Jl ...

<THRU }

The VALUE clause cannot be stated ,or any items whose size is
variable.

A signed numeric literal must have associated with it a signe~
numeric PICTURE character-string.

All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated_, the PICTURE
clause, and must not have a value which would re,uire truncation
of nonzero digits. NonnumePic literals in a VALUE clause of an
item must not exceed the size indicated by the PICTURE clause.

The words THRU and THROUQH are equivalent.

The VALUE clause must not conflict with other clauses in the data
descri,tion of the item or in the data description within the
hierarchv of the item. The following rules apply:

1. If the categorv of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the value
of a working storage item, the literal is aligne~ in the data
item according to the standard alignment rules.

PAE 84

2. If the categorv of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumeric literal.s. The Jiteral is
aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data item
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item is presented in an
edited form.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that mav be specified.

A figurative constant mav be substituted in both Format l and
Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses
permitted in the entry. The characteristics of a condition-name
are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names.
Wherever the THROUGH CTHRU> phrase is used, literal-1 must be less
than literal-2, literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section, the VALUE clause may be used only in
condition-name entries.

In the Working-Storage Section, the VALUE clause must be used
in condition-name entries. The VALUE clause mav also be used
to specifg the initial value of ang other data item; in which
case the clause causes the item to assume the specified value
at the start of the obJect program. If the VALUE clause is not
used in an item's description, the initial value is undefined.

In the Linkage Section, the VALUE clause mag be used only in
condition-name entries.

PAGE 85

The VALUE clause must not be stated in a data descT'iption entT'tJ
that contains an OCCURS clause, OT' in an entT'tJ that is suboT'dinate
to ang entT'g containing a REDEFINES clause. This rule does not
appl9 to condition-name ent1"ies.

If the VALUE clause is used in an entrlJ at the group level, the
liteT'al must be a f,tguT'ative constant or a nonnume1'ic literal, and
the gl"oup al'ea ts initialized without conside-ration for the
individual elementa-rg or g-roup items contained within this gPoup.
The VALUE clause cannot be stated at the suboT'dinate levels within
th i. IT'Oltp.

The VALUE clause must not be WT'itten for a gl'oup containing items
111ith descl'iptions including JUSTIFIED, SYNCHRONIZED, 'o,- USAQE
(othel' than USAGE IS DISPLAY>.

PAQE 86

The RENANES Clause

The RENAMES clause permits alt•rnative, possibly overlapping,
groupings of elementary items.

FORMAT

66 data-name-1 i

RENAMES data-name-2 C<THROUQH} data-name-3J. _ ____ _
<THRU }

NOTE: Level-number 66, data-name-1 and the semicolon are shown
in the above format to improve clarity. Level-number and
data-name-1 are not part of the RENAMES clause.

All RENAMES •ntries referring to data items within a given logical
record must immediately follow the last data description entry of
the associated record description entry.

Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot
be the same data-name. A 66 level entry cannot rename another 66
level entry nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be used as a qualifieT, and c.an only be
qualified by the names of the associated level 01. or FD entries.
Neither data-name-2 nor data-name-3 may have an OCCURS clause in
its data description entr1:1 nor be subo1'dinate to an item that has
an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to
the left of the beginning of the are• described by data-name-2.
The end of the are• described by data-name-3 must be to the right
of the end of the area described bv data-name-2. Data-name-3,
the~efore, cannot be subordinate to data-name-2.

Data-name-2 and data-name-3 may be qualified.

None of the items within the range, including d•ta-name-~ and
d•ta-name-3, if specified, can be an item whose size is variable
as defined in the OCCURS clause.

PAQE 87

One or more RENAMES entries can be written for a logtc:al record.

When data-name-3 is specified, data-name-1 is a group item which
includes all elementarv items starting with data-name-2 (if
data-name-:2 ·'ts an. elementa,-, item> or the first el1ttnen,ta,., :i·tem in
data-name-2 (if data-name-2 is a gT'oup item>, and concluding with
data-name-3 (if data-name-3 is an elementarv item> or the last
elementarv item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a
group OT an elementarv item, when data-name-2 is a gToup item,
data-name-1 is treated as a gToup item, and when dai.a-name-2.is an
elementaTv item, data-name-1 is treated as an elementarv item.

The words THRU and THROUQH are eq,uivalent.

PME 88

DATA STRUCTURES

Classes of Data

The five categoT'ies of data items <see the PICTURE Clause) aT'e
gT'ouped into thT'ee classes:

alphabetic
numeric
alphanume'l'ic

For alphabetic and numeric, the classes and categoT'ies aTe
svnonvmous.

The alphanumeric class includes the categories of alphanumeric
edited, nume'l'ic edited and alphanumeric (without editing).

Everv elementa'l'tJ item except for an index data item belongs to one
of the cla~ses and fu,-ther to one of the categoT'ies. The class of
a group item is treate,d at obJect time as alphanumeric ,....aT'dless
of the class of elementarv items suboT'dinate to that group item.

The following chart depicts the relationship of the class and
categories of data items:

ILEVEL OF ITEN: CLASS CATEODRY
1------------~-1-------~--------1---~------------------~:
I
:
I
: Elementarv
I

Alph•betic AlphAbetic
: ------~---------- ": -----:-~--.. ------...---~ ... ~-,- I

Nume1' i c Numeric
1----------------1----------------------:

.Alp hanume-r ic Nume-ric Ed'i ted I
Al.phan.ume-ric .Edited I
Alphanumeric

:--------------1----------------:----------------------:
INonelementaT'IJ
I <Oroup)

Alphanumeric

PAOE 89

Alphabetic
Numeric
NumeT'iC Edited
Alphanum&T'ic Edited
Alphanumttric

Representation o, Numeric Items

The value o, a numeT'ic item mav be repl'e•ented in either b;inary,
decimal or packed decimal foT'm depending on the USAQE clause
associated with the item. There are two wavs of expressing
decimal: DISPLAY and CONPUTATIONAL. Binarv is CONPUTATIONAL-1.
P•t ked decimal is CONPVTATIONAL-3.

The selecti~n of the proper representation is dependent upon the
usa1e of the nume1'ic item. Items which must be used for input and
output should be of DISPLAY usage to eliminate conversions to
external forms. For efficiencv of arithmetic operations, ..
COMPUTATIONAL, CONPUTATIONAL-1, or COMPUTATIONAL-3 should be used.
To reduce conversions and increase efficiencv, types should not be
mixed in operations except where re~uired by program needs.

Representation of Algebraic Signs

AlgebN1ic signs fall into two categories:

operational signs which are associated with signed nume,-ic
data items, and signed numet-ic literals to indicate their
algebraic properties; and

editing signs which appear to identify the sign of the item.

For DISPLAY, COMPUTATIONAL, and CONPUTATIONAL-3, an unsigned
numeY'ic item is .assumed to have an operational · sign which is
positive and taJill l'eceive the al>solute value of &igned it•••· A
sitned numeT'ic item maintains the operational sign•• a sepa1'1111te
trailing character.

For CONPUTATlONAL-1 <which is always signed>, the ope1'ational sitn
is maintainttd as pa-rt of the item in two's complemttnt signed
bi nary f o1'm.

Editing signs are inserted into a data item thY'ough the use of the
sign control symbols of the PICTURE clause.

PAQE 90

Standard Alignment Rules

The standard rules of positioning data within an elementarv item
depend on the categorv of the receiving item:

If the receiving data item is described as numeric:

a. The data is aligned bv decimal point and is moved to the
receiving character positions with zero fill ~T' truncation
on either end•• required.

b. When an assumed decimal point is not explicitlv specified,
the data item is treated •s if it had an assumed decimal
point immediatelv following its rightmost character and is
al ign•d as in a. above.

If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aliJned by decimal point
with zero-fill OT' truncation at either end as requiT'ed within
the T'eceiving c~aract•r po•itions of the data item, except
where editin1 req,uirements cause replacea•nt of the leading
ZeT'OS.

I.f the receiving data item is alphan:umttric (other than a
numeric edited data item>, •lphanumeric edited or alpbaltetic,
the sending data is moved to the receiving chal"acte1", <fJositions
and aligned at the leftmost character position in the data
item with space-fill or t'l"uncation to the right, as req,uired.

If the JUSTIFIED clause is specified for the receiving item, these
standard 1"ultts ar• modi flied as desc:1",ibed in the JUSTIFJED clause.

PAQE 91

QUALIFICATION

Everv user-specified name that defines an element in a COBOL
source program must be unique, either because no other .naae has
the identical spelling and hvphenation, or because the name exists
within a hierarchy of names such that references to the name can
be made unique bv mentioning one or more of the higher levels of
the hier.1rchv. The higher levels are called ,ualifiers and this
process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however,
it mav not be necessary to mention all levels of the hierarchv.
Within the. Data Division, all data-names used for qualification
must be associated with a level indi.cator or a level-number.
Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they•"• capable of being made
unique through qualification.

,In the hierarchy of qualification, names associated with a level
indicatol' are the most significant, then those names associated
with level-numb el' 01, then names assoc.iated with level-numb el' 02,
... , 49. The mo•t significant name in the hieT'al'chv must be unique
and cannot be qualified.

Qualification is f181"f01'1Ded by following a data-name, btJ one or
more phT"ases coaposed of a qualiilie,- preceded bt IN 01" OF. IN and
OF a1'e logically equivalent.

FORMAT 1

<data.,..name-1> C<OF>data-name-2 l ...

<condition-n•••> <IN>

FORMAT 2

paragraph-naae C<OF> section-name]

<IN}

PAQE 92

The rules for quali,ication are as follows:

1. Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

2. The same name must not appea-r at two levels in a hie'ra-rchv.

3. If a data name is assigned to more than one data item in a
source prog'ram, the data-name must be qualified each time it
is refer-red to in the Procedure, Environment, and Data
Divisions <except in the REDEFINES clause where qualification
is unnecessary and must not be used.)

4. A paragraph-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A pa-ragraph-name need not be
qualified when referred td ~rom within the same section.

S. A data-name cannot be s.ubscripted when it is b.eing used as a
qua 1 i f i e-r.

6. A name can be qualified even though it do•• no~ need
q,ualification: if there is more than one combination of
q,ualifiers that ensures uni4u.eness, then anv such set c•n be
used. The complete set of qualifiers fo1" a data-name aus.t not
be the same as anv pal"tial set of ·qualifiel's ilol' anothe,
data-name. Gualified data-names may have anv: numbeT of
qualifiers up to a limit of 49.

PAOE 93

SUIISCRIPTINO

Subscripts can be used onlv when reference is made to an
individual element within a list of a table of like elements that
have not been assigned individual data-names <see The OCCURS
.Clause).

The subsc1"i9t can be represented eithe1"' btJ a nume-ric literal that
is an int.eger OT" by a data-name. Th• data name must b• a numeric
elementarv item that represents an intege1"'. When tht subscript is
represented bv a data-name, the data-name mav b• q,ualified but not
subscripted.

The subscript mav be s.ign•d and, if signed, it must be p.ositive.
The lowest possiflle subsc1'ipt valu• is 1. Th is value points to the
first element of the table. The nttxt seq,uential elements of the
table aT"e pointttd to bu subscT"ipt._ who•e values aT"tt 2, 3, ... n.
The highest permissible subscT"ipt value, in anv particula1"' case,
is the maximum numbe1"' of occu1"'1"'ences of the item as spectfied in
the OCCURS clause.

Th-e subscT"ipt, ·· or set of subscr.ipts, that identif.ies the table
el.emen.t is delimited bv the balanced pair of ••parato'l's, left
parentheais and right pa1"'enthtHitt. following the table element
data-name. Th• t,able element data-name append.ed with a ·subscl'ipt
is called a subscTipted data-nam• o'1"' an idttntifiet-. When moTe than
one subscTipt is 1"eq,ui1"ed, thev are written in the 0T'dttr of
successively 1••• inclusive dimensions of the data o1'ganization.

FORMAT

<data-name > <sub•cl'ipt-1 tsubscript-i C,sub•c1'ipt-3ll>
<condition-name>

PAOf 94

INDEXING

References can b• made to individual elements within a table of
like elements blJ specifving indexing for that reference. An index
is as,signed to that level of the table bv using the INDEXED BY
phrase in the definition of a table. A name given in the INDEXED
BY phrase is known as an index-name and is used to refer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value blJ a SET
statement, or a FORMAT 4 PERFORM statement.

Direct indexing is specified bv using an index-name in the form of
a subscript. Relative indexing is specified when the index-name is
followed blJ the operator+ or-, followed bV an unsigned integer
numeric literal all delimited bv the balanced pair of separators,
left parenthesis and right parenthesis, following the table
element data-name. The occurrence number -resulting from relative
indexing is determined bv incrementing (where the operator+ is
used> or decrementing <when the opeT'atoT' - is used>, blJ the value
of the liteT'al, the occuT'rence number represented blJ the value of
the index. When more than one index-name is re~uired, thelJ are
written in the orde-r of succe•sivelv less inclusive dimensions of
the data organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the
index-name associated with the table element must neitheT'
correspond to• value less than one <1> nor to a value greater
than the highest permissible occurrence numbe-r of an element of
the associated tabl•. This restriction also applies to the valu•
resultant from T'elative indexing.

FORNAT

<data-name> C(index-name-1 C<+> litera1-2l>
<condition-name> <literal-1 <-> >

C,<index-name-2 C<+> literal-4l>
<literal-3 <-> >

C,<index-name-3 C<+> litersl-6J}ll>
(literal-5 <-> >

PAQE 9:9

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not
uniq,ue in a program, must b·e fol lowed l,IJ a S1Jnta'ct·icall1 corT'ect
ccul'bination of qualifiers,, subscripts or indices necessary to
ensure uniqueness. T11it ;genet"al formats fo1" identif:iers, aT'e:

FDRNAT 1

data-name-1 C<OF> data-name-2] ... C(subsc-ript-1

{IN}

C,subscript-2 C,subscript-3ll)l

FORNAT 2

· vata-name-1 C<OF> data-name-2] C ((htdex-naae.,...1 C<+> 1 iteral-2]>
<l i te-ra.1-1 <-J- >

(IM} _,
C,(index-name-2 C<+> literal-4]>

<li teT'aJ.,...3 <-> >

C, <index-t1aae-3 C<+> 1 i teral-ol>JJ·> l
(1 i teral-5 <-> · >

Restrictions on q,ualification, subsci'ipting. and inde'xing are:

A data-name must not itself be subscripted not'
that data-name is being used as an index,
qual ifie1"'.

indexed when
subsc.,.t,t OT"

lnd4ning is not peY'mitted whet'e subscripting, is· not per•itted.

An index mav l>e modif·t.ed only bl the SET and PERJ:'ORM
statements. Data items n·sc,-ibetl b'J · the USAGE JS INDEX clause
per.mit sto-rage of the values associated with index-names as
data In a fo'I"• spe·cified bV the co,npi:le1". Such data items a-re
called index data items.

LiteY'al-1» litet'al-3, literal-5 in the above fot'aat must be
positive numeric intege1"s. Literal-2, literal-4, 1ite1"'al-6,
must be unsigned numet'ic integers.

PA9E 96

CONDITION-HANE

Eac,h condition-name must be uniq,ue, or be made unique through
qualification and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the
asttociated conditional vaTiable mav be used as the • first
qualifieT. If ciualification is used, the hierarchy of names
associated with the conditional .v•riable 01" the conditional
variable itself must b.e used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The forma.t and rest1'ictions on the combined use of q,ual ification,
subscripting, and indexing of condition-names is exactly that of
'identifie1'' except that data-name-1 is replaced by
condition-name-1.

In the general formats, 'condition-name' refers t.o a
condition-name ciualified, indexed or subsc1'ipted, as necesscll'IJ.

PAQE 97

TABLE HANDLING

Tables ol deta are common components of business data processing
problems. Although items of data that make up a table could be
described as contiguous data items, there are two reasons whv this
approach is not satisfactorv. First, from a documentation
standpoint, the underlying homogeneity of the items would no•t be
readily apparent, and second, the problem of making availalrle an
individual element ·of such a table would be seveT'e when 'theT'e is a
decision as to which elemeni;;.is to be made available at obJect
time.

Tables composed of contiguous data items ar~ defined in COBOL by
including the OCCURS clause in their data descT'iption entries.
This clause specifies that the item is to be repeated as man,
times as stated. The item is considered to be a table element and
its name and descT'iption apply to each repett•ton or occu-rT'ence.
Since each occurrence of a table element does not have assigned to
it a unique data-name, reference to a desired occurrence mav •e
made onlv bv specifving the data-name of the table element
togethe,- with the occu1"1'ence number of the desired table elet1ent.
Subscripting and indexing are the two methods ttuat a'J"e used to
specifv the occut'rence number of a desit'ed table element.

Table Definition

To define a one-dimensional table, the prograN1e1' u••• an OCCURS
clause as paT't of the data description of the teble element, but
the OCCURS clause must not appeaT' in the description of gT'oup
items which contain the table element.

Example 1:

01 TABLE-1.
02 TABLE-ELEl'IENT OCCURS 20 TINES.

03 HANE•.
03 SSAN

Defining a one-dimensional table within each occu1'-rence of an
element of another one-dimensional table gives T'ise to a
two-dimensional table. To define• two-dimensional table, then, an
OCCURS clause must appear in the data desct'iption of the element
of the table, and in the description of onlv one g1'oup item which
contains that table. In the desc1'iption of a thT'ee-dtmensional
ta.b le, the OCCURS clause should appear in the data desc,-tption of
2 nested group items which contain the element. In COBOL, tables
of up to 3 dimensions are pet'mitted.

Exaaple 2 shows a table which has ene diaensien for
CONTINENT-NAME, two dimensions for COUNTRY-NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items--10 for CONTINENT-NAME, 500 for COUNTRY-NAME,
50,000 for CITY-NAME, and 50,000 for CITY~POPULATION. Within the
table there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT-NAME there are 50 occuT'T'ences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

Example 2:

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the reference aust
indicate which occurrence of the element is intended. For access
to a one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each diaension of the table accessed. In Example 2 then, a
reference to the 4th CONTINENT-NAME would be coaplete, whePeas a
reference to the 4th COUNTRY-NAME would not. To refer to
COUNTRY-NAME, which is an element of a two-dimensional table, the
us•r must 1"efer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

One method bV which occurrence numbers mav be specified is to
append one or mo-re subsc-ripts to the data-name. A subsc1"ipt is an
intege-r whose value specifies the occurrence number of an element.
The subscript can be 'rep-resented eithe-r bv a literal which is an
integer o-r bv a data-name which is defined elsewhe1"e as a numeric
elementarv item with no characte-r positions to the right of the
assumed decimal point. In either case, the subscript, enclosed in
parentheses, is written immediately following the name of the
table element. A table -reference must include as many subscripts
as the-re are dimensions in the table whose element is being
refe-renced. That is, the-re must be a subscript fo-r each OCCURS
clause in the hierarchv containing the data-name, including the
data-name itself. In Example 2, 1"efe-renc~• to CONTINENT-HANE
require onlv one subscript, reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require
three.

PAGE 99

Wh•tt mo'f"e than one subscript is Tequired, thev are written in
o-rde-r of successively less inclusive dimensions of the data
o-rganization. When a data-name is used as a subscript, it mav be
used to refer to items in manv different tables. These tables need
not have elements of the same size. The data-name may also appea-r
as the only subscript with one item and as one of two or three
subscripts with another item. Also, it is permissible to mix
literal and data-name subscripts, for example: CITY-POPULATION
C 10, NEWKEY, 42>.

Another method of refe-rring to items in a table is indexing. To
use this technique, the programmer assigns one o-r mo-re index-names
<defined with the INDEXED-BY phrase of the OCCURS clause> to an
item whose data description contains an OCCURS clause. There ts no
separate entrv to describe the index-name since its definition is
completelv hardware-oriented and it ts not considered data per se.
At obJect time the contents of the index-name will correspond to
an occurrence number for that specific dimension of the table to
which the index-name was assigned. The initial value of an
index-name at obJect time is not determinable and the index-name
must be initialized by the SET statement before use.

When a reference is made to a tabte element, or to an item within
a table element, and the name of the item is followed bt its
related index-name or names in parentheses, then each occurrence
number required to complete the reference will be obtained from
the respective index-name. The index-name thui acts as a subscript
whose value is used in any table reference that specifies
indexing.

PAQE 100

VI

PROCEDURE DIVISION

PAGE Ull,

THE PROCEDURE DIVISION

The PT"oceduT"e Division must be included in everv COBOL source
program. This division mav contain declaratives and nondeclarative
procedures.

The Procedure Division is identified by and must begin with the
following headeT":

PROCEDURE DIVISION CUSINO data-name-1 t,data-name-2l ... l.

The USINQ phrase is present if and onlv if the obJect program is
to function under the contT"ol of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedu1'e Division
htu1deT" must be defined as a data item in the Linkage Section of
the progT"am in which this header occurs, and it must have a 01 or
77 level-number.

Within a called pT"ogTam, Linkage Section data items are p~ocessed
acco1'ding to their descriptions given in the called protT"am. Of
those items defined in the Linkag• Section onlv data-name-1,
data-name-2, items subordinate to these data-names, and
condition..;names and/01' index-names associated with sucb data-names
and/o:r subordinate data items, mav be referenced in the Procedul"'e
Division.

When the USINO phrase is p-resttnt, the obJect program operates as
if data-name-1 of the P-rocedure Division header in the called
program and data-name-1 in the USINQ phrase of the CALL statement
in the calling pro91'am refer to a single set of data that is
equallv available to both the called ctnd calling programs. Ttt,ei1'
definitions must contain the same data descl'iptions; howeveT, thev
need not be the same name. In like manner, there is an equivalent
relationship between data-name-2, ... , in the USINO phrase of the
called progT"am and data-name-2, ... , in the USING phrase of the
CALL statem•nt in th• calling program. A data-nam'e must not appea1'
mo-re than once in the USINQ phl'ase in the P?ocedure Division
header of the called program; howevel', a given data-name mav
appear more than once in the same USINC> phrase of a CALL
statement.

St1'UC tul'e

The bodv of the P1'ocedure Division must conform to one of the
following fo..-.. ts:

FORNAT 1

PROCEDURE DIVISION CUSINQ data-name-1 C,data-name-~l ...].

[DECLARATIVES. ----~-........... ---
<section-name SECTION Csegment-numberl. declarative-sen.tence

Cpal'ag..-aph-name. Csentencel ... l ... > ...

END DECLARATIVES. l _ _.. _______ __

_ ,...._..., ___ "
Cpa-ra11"aph-name. Csentttncel ..• l . t •. }, •••

CEND PROQR~l.

FORMAT 2

PROCEDURE DIVISION CUBING dat•-name-1 t,data-name-21 ... l.

(pa..-agTaph-name. tsentencel ... } ...

CEND ..• PROQRAMl .
...... _ -------------

The segment-numb•.,. must be an intege..- 1'anging in value from 0
thT'ough 127.

If the segment-numbe..- is 011itted f..-om the section header, the
segment-numb•.,. is assumed to be 0.

' Sec:tiofl• in;: the decla..-atives must contain segmen.t-nvmber, less
tt.aa-,,IO·.:

All sections which have the same segment-number constitute a
program segment. Sections with the same segment-number must be
physically contiguous in the source program.

Segments with segment-numbers O th1"ough 49 belong to the fixed
portion of the ob Ject p1'og1'am. Segments with segment-numb.et-s 50
through 127 a,-e independent segments. Independent segments must
follow fixed segments.

Declaratives

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and
followed by the kev words END DECLARATIVES.

Procedures

A pT'ocedure is composed of a paT'agT'aph! OT' g1'oup of successive
parag1"aphs, or a section, 01" a g1'ouff1 of sutces.sivfi.' :se·e,tlons within
the P1"ocedure Division. If one paT'agT"aph is in/• section, then all
paragraphs must be in sections. A procedure-name is a word used to
refer to a paT'agT'aph OT" sec1tion. It cott·ststs of a pa'l-ag'f'aph-name
<which may be tualified>, or a section-name.

A section consists of a section header followed bv· re'ro, O'f mo1"e
successive pa,-agraphs. A 1utction ends immediatelv lefore the next
section or at the end of the Procedu1'e Division or, in the
declaT'atives poT'tion of the PTocedure Division, at the te.t W01'ds
END DECLARATIVES.

A paragNtph consists of a paragT"aph-name folU,w·ect 1>V a p1t1"iod and
a space and by zeTo, 01' more succ·e11sive sentences. A para9Taph
ends immediatetv befo1'e the next pa,.•1••1»11-nan 1>1" s•ctiot,c-name 01'
at the end of the P1'ocedure Division 01', in the declaratives
pol"tion of the PT"ocedure Division, at the· ''llev t,ffds' END
DECLARATIVES. A paT"agraph-name must not be duplicated within a
section.

Execution

Execution begins with the first statement of the Procedu,-e
' Diviwn,n, •xclvding i:HtclaT'atives. Statement.,,*"• th•n •••cute:d in

the o,-der in which thev aT"e presented fol' comp i lati\ln,,: e:xcept
wheTe the 'rules indicate some othe,. orde1".

PROCEDURE REFERENCES

A procedure is referred to bv its paragraph-name or section-name.
Paragraph-names mav be q,ualified bv the section-name of the
section containing the paragraph, whether or not it needs
qualification. When referring to a section-name or when using a
section-name as a qualifier, the word SECTION must not appear.
Gualificat.ion •is performed bv follo111ing a parag.,.aph-n••• with a
section""'1'tame preceded by IN or OF. IN and OF are log.icallv
equivalent. The geneJ-al format for parag1'aph q,ual,ification is:.

paragraph-name £<OF> section-namel

<IN>

A paragraph-name need not be qualified when referred to from
wi~hin the same section or when the paragraph-name is unique.

Explicit and Implicit Transfers of Control

The mechanism that.controls p~ogram flow transfers control fr~m
statement to statement in the sequence in which thev were written
in the source ,progn1m unless an•. explicit t-r:ansfe-r. of control
overrides this sequence or there is no next executable statement
to which control can be passed. The tran$fe-r of control from
statement to statement occu1's without tlrew1'iting of·an explicit
P-roc.edu..-e Division statement, and the..-efo1'ih is, ,an implicit
t-ransfer of cont,-ol.

COBOL p,-ovides both .explicit and implicit means of ., .• ering the
imp.licit control transfer .•echanism.

In addition to the implicit transfer of cont1'ol between
consecutive statements, imp 1 ic it transfer of contl"'ol also occu1's
when the no1'mal flow is altered without the •••cution of •
procedu-re branching· statement. COBOL p1'ovides the following tvpes
of implicit control flow alterations which override the
statement-to-statement transfe1's of control:

If a paragraph is being executed under control of another
COBOL statement (for example, PERFORM and USE) and the
paragraph is the last paragraph in the range of the
cont-rolling statement, then an implied transfer of control
occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling state•ent. Fu'rther,
if a pa1'agraph is being executed unde-r the control~, a
PERFORf1 statement which causes iterative execvtion and that
pa-ragraph is the fi1"st paragraph in the range of that PERFORM
statement, an implicit tl'ansfe.,- of cont-rol oc.cu-rs between the
cont-rol mechanism associat.ed with that PERFORM statement and

PAO£ 101

the first statement in that paragraph for each iterative
execution of the paragraph.

When anv COBOL statement is executed which results in the
execution of a declarative section, an implicit transfer of
control to the declarative section occurs. Note that another
implicit transfer of control occurs after execution of the
decla'l'ative.

An explicit transfer of cont.rol consists of an alteration of the
implicit contr,ol transfeP mechanism btJ the etKvtion c,f a
p'l'Ocech,?e bPanching 01' conditional statement. An explicit tTansfe1'
of control can be caused onlv by the execution of a procedure
b'l'anching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an
explicit transfeP of control, but affects the explicit transfer of
control that occu1's when the associated GO TO statement is
executed.

In this document, th• t•rm 'next executable·
refer to the next COBOL state.ant to which
according to the rules above and the rules
language element in the P-,;ocedurei,Divisioft.

stat•aent' i• Oted to
c.ont..-ol is transfe1'red
associated with each

Th••• ts no next executable statement following:

The last statement in a declarative ••ction when the paragPaph
in which it'appears is not being exeq.uted unde1" the contrrol of
•••• otbeP COBOL statement,;, In COBOL, the -re.sul t would be an
iMftlicU: ·t1'ansfe1' •• control to tne ;,fiPst nondee1•1"•tiv•
s. tat eaen't. · ·"'

The last s.tatement in a program when the paragl"aph in which it
af ptHtPs is not being executed unde:r the cont-rol of so•• othe1-
COBOL statement. The re11ult w.oul0d be as if an iaplU::it STOP
RUN stat•••nt wePe tuecuted.

SEGMENTATION

COBOL segmentation is a facility that provides• means by which
the user may communicate with the compiler to specify obJect
program overlay requirements. COBOL segmentation deals only with
segmentation of procedures.

Segments

When segmentation is used, the entiNt P-rocedure Division must be
in · sections. ln addition, each section must be classi,ied as
.belonging either to the fixed po-rt ion or to one of ·tire independent
segments of the obJect prof'ram as determined I.HJ th·e assignment of
segment numbe1's. Al\l sou'rce paragraphs which cohta:.tn the same
segment-numbeT'& can 'range from 00 through 127, it is possible to
sulnUvi:d• . an• olr~•c::t pl'ogram 'into · a maximum oft 128' segments.
Setm•ntact.ion in no wav aff'9.cts the · need for ctual ifi:cation of
procedure-n••• to insuT'e uniqu•ru,s•. ,, 1

Fixed Po'l'"tion

The fixed portion is defined as that part of the obJect program
which is alwags in aemorv. Tit.is po1'tion of th• p1'og1'am is composed
of segments with segment-numbers O through 49.

Inda.pendant Se9:,nents

An iru.tepettdent s•gment ts defined•·•• pat-t crf the ob Ject p-rogr••
which can overlay, and can be overlaid bt(I, .. anothe1' hhhtp•ndenf:
segment .. An ind•pendent s•gment has a ••t••rit..;.numbe1' 50 · through
127.

An independent segment is in its initial state wheneve,. cont-rol is
transfer1'ed <eith•,. implicitly or explicitlj> td that segment foT'
the fi1'st time du1'ing the execution of a progT'aa.

On subsequent t1'ansfe1's of cont1'ol to the segment, an independent
segment is also in its initial stat- when:

Control is transferred to that segment•• a result of the
iaplicit t1'ansf!er of control between consecutive statements
f1'om a segment with a different segment-number.

Control is t1'ansferred explicitly to that segment fro• a
seg,nent with a diffle1'ent segment-number.

On subsequent transfer of control to the segment, an
segment is in its last-used state when control is
implicitly to that segment from a segment with a
segment-number.

Segmentation Classification

independent
transfer·rttd

different

Sections which are to be segmented are classified u&ing a svstem
of segment-numbers and the following criteria:

Logic Requirements--Sections which must be available for
T'f!ference at al 1 t4.me:s, or wh i.ch at'e re"Per:r:ed' to verv
ff'equenttv, al"e normally t:lassified a.s belonging to one ,of the
per,..rtent s.,:gmen,ts;, sectian,s wh.ich are used 1.ess f1'.eq.ventlv
a1'e normallv., classifiad as belonging to .one of the independent
se1ments, depJtndint on. logic requirements.

Frtctu•rtt=V of ,Use--O.eneral lv, the mo1'e h,.eq,uen,tlv aJ sec·tion is
r,,,,..,.e,f to, the 10.,e1' its segment-numben the less fl,-equentlv
it is refle1'1"ed to, the highe1'. j.ts •••••nt-n•ber.

Relationship to Othe1' Sections -- Sections which flrequentlv
communicate with one anothel" should be .given the same
segment-numbe1's.

Segmentation Cont1'ol

The looh:al sequence of the pr,o,gram is tr•• same as the ptt,isical
,Jeg.uenca except for i;paf;ific ti,Jntf•T'• o·f,,,·.cont1'•b Cont1-al NU be
t1'ansfer1'ed with,p •~•ource prat1'•• to,•nv P•r•1•aph in a section,
tt,at .is, it is not ,.._n~atcrru to tra .. tfet"•,,control to the IJaginnirig
of a section.

Restrictions on Program ~iow

When segmentation is used, the following t'estrictions af'e placed
on the ALTER and PERFORM statements.

Th• ALTER STATEMENT

A QO TO statem•nt in a section whose segment-number is greater
than or e~ual to 50 must not be referred to bv an ALTER statement
in a section with a different segment-number.

The PERFORN STATENENT

A PERFORN statem•nt that appears in a s•ction that is not in an
ind•pendent segment can have within its range, in addition to anv
declarative sections whose execution is caused within that range,
onlv one of the following:

Sections and/or paragraphs whollv contained in one or more
fixed segments, or

Sections and/or paragraphs whollv contained in a single
independent segment.

A PERFORN statement that appears in an independent segment can
have within its range, in addition to anv declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs whollv contained in the same
independent segment as that PERFORN statement.

PME 109

THE USE STATEMENT

The USE statement specifies proceduT'es fo1' input-output error
handling that are in addition to the standard procedures p1'ovided
by the input-output cont,-ol system. It is a compiler directing
statement re~ui1'ed in each declaT'ative section.

FORNAT

USE AFTER STANDARD {EXCEPTION> .-------------
<ERROR >

PROCEDURE ON <•ile-name-1 C,file-name-2J ... >

<INPUT ____ ..,..,
<OUTPUT _______ _,_

<I-O

<EXTEND

>
}

)

}

A USE statem•nt, whttn pT'es•nt, must .ifflfHd.i•t•lv
headeT' in the declaT'atives section and must be
peT'iod followed bv a space. The 1'emaindeT" of
consist of zero, one OT' more procedural paragrahs
procedures to be used.

follow• section
followed bv a

the section must
that define the

The USE statement itself is never executed, it merely delines the
conditions calling ,or the execution of the USE procedure.

The same file-name can appear in only one USE statemet1t.

The words ERROR and EXCEPTION aT'e svnonvmous and mav be used
interchangeab 1..,.

The designated proceduT'es can be executed bv the input-output
system after completing the standard input-output error routine,
or upon recog,nition of the INVALID KEY o1' AT END conditions, when
the INVALID KEY phT'ase or AT END phrase, respectivelv, has not
been specified in the input-output statement.

AfteT' execution of a USE pT'ocedure, control is returned to the
invoking T'0utine.

PAE 110

Within a USE procedure, there must not be anv reference to anu
nondeclarative procedures. C~nverselv, in the nondeclarative
portion there must be no reference to procedure-names that appear
in the declarative portion, except that PERFORN statements mau
refer to• USE statement or to the procedures associated with su~h
a USE statement.

Within a USE procedure, there must not be the execution of anu
statement that would cause the execution of a USE procedure that
had previouslv been invoked and had not vet returned control to
the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON 1-0.
IO-ERROR.

DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTtNUE-FLAQ POSITION ZERO.
IF CONTINUE-FLAG• "NO" STOP RUN.

END DECLARATIVES.

PAOE 111

ARITHNETIC STATEMENTS

The a-rithmetic state,nents ADD1 COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT have several common features:

The data descriptions of the operands need not
any necessary conversion and decimal point
supplied throughout the calculation.

be the same;
alignment is

Arithmetic operations al'e calculated in either binary,
decimal, packed decimal, or mixed d•pending on the USAQE of
the operands and receiving item according to the following
rules:

If the receiving data item of a divide operation is
DISPLAY or COMPUTATIONAL, the operation is always
calculated in decimal with anv necessary conversions.

Intermediate and final -,.esuLts a..-e c.alculatetl in binary if
all preceding intermediate results are bina..-y and the next
operand has COl'PUTATIONAL-1 usage <except as noted in
pl'evious pa,-411g,-aph). Othe-rwise, the 1''emaining inte-rmediate
and final l'esults are calculated in decimal with anv
necessary conversions.

The maximum
digits. The
data item
operands in
not contain

size of each operand is eighteen (18) decimal
composite of operands, which is a hypothetical
resulting from the supe1'-imposition of specified
a stat.ement aligned on their decimal points, must
more than eighteen decimal digits.

Arithmetic Exp,-essions

An arithmetic exp,-ession can be an identifie1' of a numeric
elementary item, a numel"ic literal, such identifiers and literals
separated by arithmetic operators, two at"ithmetic exp,-essions
separated by an arithmetic ope,-ator, o,- an arithmetic expl"ession
enclosed in parentheses. Any arithmetic expression may be preceded
by a unary operator. The pe-rmissible combinations of variables,
numeric literals, al"ithmetic operato,- and parentheses.,.. given in
Combination of svmbols in Arithmetic Exp-ressions Table.

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elemental'y items or
numeric literals on which arithmetic may be pe,-formed.

PAQE 112

Arithmetic Operators

There are four binarv arithmetic operators and
arithmetic operators that mav be used in arithmetic
Thev are represented bv specific charactel's that must
bv a space and followed bv a space.

Binarv Arithmetic
Operators

+

* I

Unarv A'rithmetic
Operatol's

Meaning

Addition
Subtl'action
Multiplication
Division

Meaning

two unarlJ
expressions.
be preceded

+ The effect of multiplication
blJ numeric literal +1

Formation and Evaluation Rules

The effect of multiplication
bv numel'ic literal -1.

PaT"entheses may be used in arithmetic express,ions to specifv the
order in which elements are to be evaluated. Expressions within
par•nth•ses aT'e evaluated first, and within nested parentheses,
evaluation proceeds fl'om the least inclu•ive set to the most
inclusive set. When parentheses al'e not used, or parenthesized
expressions al"e at the same level of inclusiveness, the following
hierarchical order of execution is implied:

1st - Unarv plus and minus
2nd Multiplication and division
3rd - Addition and subtraction

PAQE 113

Parentheses a1"e used eithe1" to eliminate aabiguities in lo9ic
where consecutive operations of the same hie1"archical level appear
of" to modifv the normal hief"archical sequence of execution in
expressions where it is necessaf"v to have some deviation ff"om the
not-mal prece4ence. Wh.e:n the sequence of execution is not secified
by paTentheses, the of"def" of execution of consecutive opeTations
of the sa,ae hierarchical level is fro• left to right.

The ways in which operatoTs, vat'iables, and pa.,.entheses
combined in an arithmetic expression are summarized
following table, whet-a:

The lettef" 'P' indicates a permissible paif" of s.gmbols .

....
The character '-' indicates an invalid pair.

'Variable' indicates an identifier OT' liteTal.

mav be
in the

-----------~-----~--------------------~-~~-~--~-~--------FIRST
I SYMBOL

SECOND SYMBOL
1------------------... -----..-------~-.... -~--~~---.~---1

I I Variable I *I-+ I Unary +, or .. - •I, (I > I
l••••••===•==l•••••••••=l=======•t=••-=.-••-._,.•=l=i•=l••=t
I Vaf"iable P I - IP I I _...; __ ._ ____ ..,, ____ : ---------- : --------1 ___ . __ ...,.,..._,.... ______ , ___ I-~- J

p p : p : - :
:.-~~.-~"'y'~"!"!!"""';-~, --~-----~-: ---------------------------1---=---- t
: Unaf"v +or- I p I P I - :
I ---,----~:-~~:-- &--~•----,--- I -------..-- I -----------------1 ----1 --•- :
I < p p I P I - I
1------------1----------1----~---1-~--~-~-----~--1-~-1~~~1
I > p I - I P I --~--------~-----------------------~----~--~-~~~~~-~~~--~ • ' • • • • I

An al'i thmetic expression mav onlv begin with the sfmbol '< ', '+ ',
'- ', OT a v•~i,ab I• and may only end, ·•1th • '>' or a varia.e.le.
TheTe must. btt a one.-.to-one cor:respondence betwean 1,.,.,f,t. an.cl right
.pc1renthes•• .of an 4rithmetic expt'f1ssion such th•t ea,ch lttft ·
.pa1'enthflsi s is to th;e left of its corre.spond ing :right pa'l"enthesi s.

Af"ithmetic expressions allow the use'I"
ope:rations without the restTictions on
and/or receiving data items.

CONDITIONALS

to c.ombine ari th.aetic
compqsi te .of ·ope:r.ands

The conditions are Telation, class, condition-name, and
switch-status. A condition has a .1;-ruth value of 't"rue' o'I' 'false'.

PAOE 114

Relation Condition

A r•lation condition caus•s a comparison of two operands, each of
which mav be the data item refu•enced by an identifier or a
literal. A relation condition has the truth value of 'true' if the
relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the
formats speci.fi•d in their resp•ctive USAQE clauses. However, for
all other c~.p•rieons >the operands must ha.ve the sc11me usage. If
either of the operands is a group item, the nonnumeric comparison
rules applg.

The general format of a relation condition is as follows:

(identifier-1> <IS CNOTJ GREATER THAN}{identifier-2 }

{literal-1 > <IS CNOTJ LESS THAN ><literal-2 >

{index-name-1> <IS CNOTJ EQUAL TO ><index-name-2 > <--- -----
<IS CNOTJ :> >
<IS CNOTJ < >
<IS CNOTJ = } --~ ...

The first operand < identifier-:1,, l,iteral.-1 .or inde~-name-:1 > is
called the subJect of the conditie1n; the· second operand
(identifier-.?, liteNJl-2 or index.,-name-2> is called; the obJect of
the condition. The,,relation condition must contain ft l.1tast one
reference to a variable~

The relational operator specifies the tvpe of co•parison to be
made in a relation condition. A space must precede and follow each
reserved word comprising the relational operator. When used, 'NOT'
and the next kev word or relation character are one relational
operator that defines the comparison to be executed for truth
value; e.g., 'NOT EQUAL' is a truth test for an 'uneq_ual'
comparison, '"NOT GREATER' is a tl'utb test for an 'equal' 01' 'less'
com~arison. The meaning of the relational operators is ~s fdllows:

Meaning

0"f!!'eater than or not greater than

Less than or not less than

Eq_ual to or not eq_ual to

Relational Operator -~--~~-~~--------~-
rs tNOT:J GREAT£R THAN

IS CNOTJ >

IS CNOTJ LESS THAN

IS [NOTJ <

IS CNOTl EQUAL TD

IS CNOTl =

NOTE: The req_uired relational char•cters '>', '<', and '=' are
not underlined to avoid confusion with other symbols such
as '£' <greater than or eq_ual to>.

Comparison of NumeT'ic Operands
:,7.~,

Fat- operands whose class is nume'Pic a compal'ison is made with
respect to the algebT'aic value of the op•f'ands. The l•n9th o, the
literals or operands, in teT'ms of number of digits reprttsented, is
not significant. Zero is considered a unique value regardless of
the sign.

Comparison of these opeT'ands is permitted regardless of the manner
in which their usage is descT'ibed. Unsigned numeric operands are
considered positive fol' purposes of comparison.

PAE 116

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric. and one nonnumeric
operand, a comparison is made with respect to a specified
collating se,uence of characters. If one of the operands is
spec.ified as numeric, it must be an integer/, data item or an
inte9er literal and:

If the nonnumeric operand is an elementarv data item or a
nonnumeric literal, the numeric operand is treated as though
it were moved to an elenutntarv alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters>, and the con tents .of th is alp:hanu11Htric data
item were then compared to the nonnumeric operand.

If the nonnumeric operand is a group item~ the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters>, and the contents of this group item were
then compared to the nonnumeT'ic operand.

A noninteger numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands mav be
compared onltJ when their usage is the same. The-re are two cases to
consider: operands of e~ual size and operands of une,ual size.

Operands of equal size: If the operands are of equal size,
comparison effectivelv proceeds bV comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached,
whichever comes fil"st. The ope'rands are dete-rmined to be equal if
all p•irs of characters compare e,uallv through the last pair,
when the lCHII" o1"de-r end is reached.

The first encountered pai-r of une,ual charactel"s is compal"ed to
dete-rmine their -rel~tive position in the ~ollating sequence. The
operand that contains the cha-racter that is positioned higher in
the collating se,uence is considered to be the greater operand.

Operands of unequal size: If the operands are of une,ual size,
comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal size.

PAQE 117

CompaTisons of Index-Names and/or Index Datsa Items

If two index-names aTe compared the result is the same as if the
coTresponding occuTT'ence numbers were compared.

For an index~n•*• and a data i~em Cother than an index data item>
or literal, the comparison is made between the occurrence number
that coTresponds to the value of the index-name and the data item
or 1 i teral.

When a comparison is made between an index da'ta item and an
index~n•me or another index data item, the actual values are
compar'ed without conversion.

The result of the compa-rison of an index data item with any data
item or literal not specified above is undeftn.ed.

Class Condition

The class condition determines whetheT the operand is numeric,
that is, consists entiTelv of the characters '0', '1 ', '2', '3',
... , '9', with or without ~he operational sign; e-r alphabetic,
that is, consists entirelv of the characters 'A'. "B', 'C', ... ,
'Z', space. The gene-ral format for the class condition is as
follows:

id.entifier IS CNOTl {NUMEfUC }
-,------

{ALPHABETIC}

The usage of the operand
display. When used, 'NOT'
condition that defines the
value, e.g. , 'NOT NUMERIC'
operand is nonnumeric.

being tested must b;e described as
and the next key word specifv one class
class test to be executed foT truth
is a truth t•st for determining th•t an

PAGE 118

The NUNERIC test cannot &e used with an item. whose data
description describes the item as alphabetic or as a group item
comP,osed of elementarv items whose data description indicates the
presence of operational signCs>. If the data description of the
item being tested does not indicate the presence of an operational
sign, the item being tested is determined to be numeric onlv if
the contents are numeric and an operational sign is not present.
If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be
numeric onlv if the contents are numeric and a valid operational
sign is present. Valid operational signs for data items al'e the
standard data format chal'acters, 1 +' and '-'

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic onlv if the contents consist of anv
combination of the alphabetic characters 'A' through 'Z' and the
space.

Condition-name (Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is e~ual to one of the values
associated with a condition-name. The general-format for the
condition-name condition is as follows:

condition-name

If the condition-name is associated with a range of values, then
the conditional variable is tested to determine whether or not its
value falls in this range, including the end values.

The rules for comparing a conditional va~iable
condition-name value are the same as those specified for
conditions.

with a
relation

The result of the test is true if one of the values corresponding
to the condition-name e4uals the value of its associated
conditional variable.

PAQE 119

Switch-Status Condition

A s111itch-status condition determines the 'on' OT" 'off' status of a
soft111a:re s111itch. The switch-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES
pa:rag'r.aph of the EnviTonment Division. The gene:ral forma~ fo:r the
s111itch-status condition is as follo111s:

condition-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed bu combining •imple conditions,
combined conditions and/or complex conditions 111ith logical
connectors (logical operators 'AND' and 'OR'> or negating these
conditions with logical negation <the logical operator 'NOT'>. The
truth value of a complex condition, whether parenthesized or not,
is that truth value which results from the interaction of all the
stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions
logicallu connected or logically negated. The logical operators
and their meanings are:

Logical Opel"ator

ANO

OR

NOT

Meaning ---. ... ~--
Logical conJunction, the truth value
is 'true' if both of the conJoined
conditions are true1 'false' if one
or both of the conJoined conditions
1 .. false.

Logical inclusive OR; the truth value
is 'true' if one or both of the
included conditions is true; 'false'
if both included conditions are false.

Logical negation or reversal of truth
value; the truth value is 'true'
if the condition is false;
'false' if the condition is true.

The logical operators must be preceded bV a space and follo111ed bv
a space.

PAQE 120

Negated Simple Conditions

A simple condition is negated through the use of the logical
operator 'NOT'. The negated simple condition effects the opposite
truth value for a simple condition. Thus the truth value of a
negated simple condition is 'true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated
simple condition is 'false' if and only if the truth value of the
simple condition is 'true'. The inclusion in parenth•1uts of a
negated simple condition does, not change the truth value.

Th• general forma't for a negated simple condition is:

NOT simple-condition

Combined and Negated ~ombined Conilitions

A combined condition results f1-om connecting condit'ions with one
of the logical operatol's 'AND' or "OR'. The general format of a
combined condition is:

condition <<AND> condition> ...

(OR>

Where 'condition' may be:.

A simple condition, or

A negated simple condition, or

A combined condition, or

A negated combined condition; i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses,
or

Combinations of the above.

PAOE 121

Although parentheses need never be used wh,-n
<but not both) is used exclusively in
parentheses may be used to affect the final
mixture of 'AND', 'OR' and 'NOT' is used.

Condition Evaluation Rules

either 'AND' or 'DR'
a combined condition,
truth value when a

CondU~ion -Evaluation Rules in.dicate the wa,1,1s in· which conditions
and logh:al operators may be cp,nb .. ined and t,arenthesizad. There
must. be a one-to-one correspondence between left and 1'ight
parentheses such that each left pa1'enthesis is to the left of. its
corresponding right pa,-enthesis.

Parentheses may be used to specify the or4e,- in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence.
Conditions with in parentheses are evaluat•d first, and, with in
nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are
not used, or parenthesized conditions are at the same level of
inclusiveness, the f•·llowing hier•r•chica.1. ord1n· of logical
evluation is. implied until the fin.al truth value is· determi.ned:

Truth values for simple conditions are established.

Truth values for negated simp,le conditj.ons a1'e est•b lished.

Truth values for combined conditions a-re • stablished:

'AND' logical operators, follo111ed b-,
'OR' logical operators.

Truth values for negated combined conditions aTe established.

When the sequence of evaluation is not completely specified bt,1
parentheses, the order of evaluation of conJJec:,u:ti1ve opeTa.tions
of the same hierarchical level is from left to right.

PAOE 1i2

SEQUENTIAL ORQANIZATION INPUT-OUTPUT

The sequential organization input-output statements in the
Procedure Division are the CLOSE, OPEN, READ, REWRITE, UNLOCK,
.USE, and WRITE statements.

Function

Sequential organization input-output provides a capabilitv to
access records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

Organization

Sequential files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor record. These
predecessor-successor relationships aT'e established by the order
of WRITE statements when the file is c-reated. Once ei.tablished,
the predecessor-succ1ssor relationships do not change except in
the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were OT'iginally
written.

Current Record Pointer

The current record pointer is a conceptual entitv used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of tMt current record
pointer h•s no meaning for a file opened in the output mode. The
setting of the current record pointer is affected onlv bv the OPEN
and READ statements.

PAGE 123

I-O Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE stat.ment
and before anv applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation.

Status Kev 1

The l,eftmost character position of the FILE STATUS data item is
known as status kev 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output statement was
successfullV executed.

'1' - At End. The se,uential READ statement was unsuccessfullv
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'3' - Permanent Error. The input-output statement was
un.successful lV executed as the ruiul t of a boundarv violation
for a se,uential file or as the result of an input-output
error, such•~ data check paritv error, or transmissi~n error.

'9' - Qeneral Error. The input-output statement was
unsuccessfullv executed as a result of a condition that is
specified bv the value of status key 2.

Status Kev 2

The rightmost character position of the FILE STATUS data item is
known as status kev 2 and is used to further describe the results
of the input-output operation. This characteT will contain a value
as fol lows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
'0'.

When status keg 1 contains a value ofl '3' indicating a
peTmane.nt e'rT"0r condition, status kev 2 may contain a value oft
'4' indicating a boundary violation. This condition indicates
that an attempt has been made to WTite bevond the exteTnally
defined boundaries of a se~uential file.

PAQE 124

When status kev 1
operating system
mav contain a:

contains a value of '9' indicating an
error condition, the value of status key 2

'0' indicating an invalid operation. This condition
indicates that an attempt has been made to execute• READ,
WRITE, or REWRITE statement that conflicts with the current
open mode or a REWRITE statement not preceded by a
successful READ statement.

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open.

'3' indicating file not available. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK.

' '4' indicating an invalid open. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters.

'5' indicating invalid device or no next 'reel. This
condition indicates th.at an atteapt has been made to open a
file having parameters <e.g., open mode or organization>
which conf 1 ict with .the device assignment <RANDON, INPUT,
PRINT, ... > 01' th,at an attempt ha.s been made to execute a
CLOSE REEL stt1tement fo.r the last reel/unit of a multi-l'eel
file. In the case of a CLOSE REEL, the file has been
closed.

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a READ statement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN.

'7' indicating •n invalid record length. This condition
indicates .. an attempt has been made to open a f'i le th•t was
defined with a maximum record length different from the
externally defined maximum record length, o1" to execute a
WRITE statement that specifies a record with a length
smalle1' than the minimum or large1" than the maximum record
size, or a REWRITE statement when the new record length is
different from that of the record to be rewritten.

PAQE 125

RELATIVE OROMIZATION INPUT-OUTPUT

The Relative input-output statements in the Procedure Division are
the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Relative input-output provides a capability to access records of a
mass storage file in either a random or se~uential manner. Each
record in a relative file is uni~uely identified blJ an integer
value greater than zero which specifies the recoT'd's logical
position in the file.

Organization

Relative file org•nization is' permitte:d onlv, on mass sto-rage
d.evices <RANDOM device>.

A relative file consists of records which are identified blJ
relative reco1'd numbers. Th• file ,nay be thought of as composed of
a serial string of areas, • each capable, of holding a lo·gical
recor.d. Each oft these are•• is denominatttd blJ a rel'at.'ive -record
number. an integer v•lue gT'eater than zero. Records artt stoT'ed and
retrieved based on this numbe-r. Fc'o-r •••ample, the tenth -record is
thtt one addressed btJ relative record nontber 10 and is the t•11th
:record area, whether or not recof'ds have been ldf'itten in the fi+st
through the ninth record aT'eas.

Access Nodes

In the sequential access mode, the se~u•nce in which records are
accessed is the ••cendin9 order of the ~el•tive record numbers of
all ~•cords which currently exist within the file.

PAQE 126

In the 'l"'andom acc•ss mode, the seq,uence in which recol'ds a1"e
accessed is cont'l"'olled bv the programmer. The desired T'ecord is
accessed bv placing its relative record number in a relative kev
data item.

In the dvnamic access mode, the programme,. may change at will from
seq,uential access to random access using appropriate fo'l"'ms of
input-output statements.

Cur1"ent Record Pointer

The cur,.ent record pointe~~ is a conieptual entity uied in this
document to facilitate specifi~ation of the next reco'l"'d to be
accessed within a given #ile. The concept of the cu1"rent 1"8C01"'d
pointer has no meaning for a file opened in the output mode. The
setting of the c~rrent record pointer i~ affected only by the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file c.ontrol .entrv, a
value is placed into t~e specified two-chal"acte,- data item durint
the execution of an OPEN, CLOSE, READ, WRlfE, R:iWfUfE, DELETE, or
START stat•••nt and before atnlJ applitiib·ie · \:ISE procedure is
execu1atd, to indicate to the COBOL pT'ogram the st411tus of that
input-output operatioft:

Status Kev 1

The leftmost ch-•racte,- position of th• FlcE ST'AfU$ dt1ta item is
known as status kev 1 and is set toe indicate one o.P the follo411ing
conditions upon completion of the input-ou,put os,eration:

'0' - Successful Completion. The input-output was'successfullv
executed.

'1' - At 'End. The stattement was unsuccessflully executed as a
,-esult of an attempt to read a record when no next logical
,-ecord exists in the file.

PAQE 127

'2' - Invalid Kev. The input-output statement was
unsuccessfulllJ executed as a result of one of the following:

Duplicate Kev
No Record Found
Boundaru Violation

'3' - Permanent
unsuccessfulllJ
e1'ror, such as
er1'or.

Error. The
executed as
data check,

inpvt-outp1,1t
the 'result of
paritCJ error,

st•tement; was
an input-output

or transmission

'9' - Qene1'al Er1'or. The input-output statement was
unsuccessfully executed as a 'result of a condition that is
Jipecified blJ the value of status kelJ 2~

St411tus KelJ 2

The rightmost character positiott of the F:'ILE StATUS data Uuim is
known as status key 2 and is used.to further describe the -results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation, then status kelJ 2 contains a value of
'0'.

When statu5 kew 1 contains .a value of '2' indicating an
INVALID KEV cottditj~rh status k•Y 2 is:

'2~ indicating·• dupl~cate keg value. An attemp~·h,~ been
made to write a record that would create a duplicate keg.

'3' indicating no record found. An attempt has bee,..,., made
to accets a record, identified by a k&IJ, and that record
does not Axist in the file.

'4' indicat;~~g .a bound.arv violation. An attempt .has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a value of ,q, indicating an
operating system error condition, the value of status key 2
is: ·

'0' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a se4uential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAQE 128

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE, or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. An attempt .has been made
to execute an OPEN statement on a file that is currently
open.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed WITH
LOCK.

'4' indicating invalid OPEN. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. Thi1 condition indicates
that an attempt has been made to open a file having
parameters <e.g., open mode or orl~fiization> which
conflict with the device assignment <RANDOM, INPUT, PRINT,
...) .

'6' indicating an undefined current record pointer st::atus.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to OPEN.a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
re111r i tten.

The INVALID KEV Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the Sijstem takes
these actions in the following order:

PAOE 129

A value is placed into the FILE STATUS data item, if s,ecified
for this file, to indicate an INVALID KEV condition.

If the INVALID KEV phrase is
causing the condition, control is
KEV imperative statement. Any USE
file is not executed.

specified in the statement
transferred to the INVALID
procedure specified for this

If the INVALID KEV phrase is not specified, but a USE
p1'ocffl:Urre is specified, either explicttlv o1' implicitly, flo1'
this file, that p1"oc1HfuTe is executed.

When the INVALID KEY condition occurs,
input-output statement whirh recogniied
unsuccessful and the file is not affect•cf.

The AT END Condition

execution of the
th• condition is

The AT END condition can occur as a result of the execution of a
READ s,atement. When the AT END condition occurs, execution of the
READ slattement is unsuccessful.

PAOE. iGO

INDEXED OROANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Indexed input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a nonse~uential organization file is uni~uelv identified
bv a key.

Organization

A file whose organization is indexed is a mass stora1e file in
which data records mav be accessed by the value of a key. A record
description mav include one or more key data items, each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index.

The data item named in the RECORD KEV clause of the file control
entry for a file is the prime record key for that file. For
purposes of inserting, updating and deleting records in a file,
each record is identified solely by the value of its pri~• record
key. This value must, therefore, be unique and must not be changed
when updating the record.

Access Modes

In the sequential access mode, the se~uence in which records are
accessed is the ascending order of the keys of all records which
currently exist within the file.

In the random access mode, the seijuence in which records are
accessed is controlled by the programmer. For indexed files, the
desired record is accessed by placing the value of its record kev
in a record kev data item.

PAGE 131

In the d1namic access mode, ·the programmer ma, change at will from
sequential access to random access using appropriate forms of
input-output statements.

Current Record Pointer

The current record pointer is a conceptual entitv used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current recol"d pointer is affected onlv bv the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control entrv, a
value is placed into the specified two-chaPacter data itN du1"in1
the execution of an OPEN, CLOSE, READ, .WRITE, REWRITE, DELETE, or
START statement and before anv applicable USE p1"ocedure" is
exe~uted, to indicate to the COBOL program the statu1 of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status kev 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The Format 1 READ statement was unsucae1sfully
executed•• a result of an attempt to read a record when no
next logical record exists in the file.

'2' - Invalid Kev. The input-output statement was
unsuccessfullv executed as a result of one of the f~llowing:

se,uence Error
Duplicate Kev
No Reco-rd Found
Boundarv Violation

PAOE 132

'3' - Permanent
unsuccessfully
error, such as
error.

Error. The
executed as
data check,

input-output
the result of
par i tv error,

statement 111as
an input-output

or transmission

'9' - Qeneral Error. The input-output statement 111as
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

T~• rightmost character position of the FILE STATUS data item is
kno111n as status key 2 and is used to further describe the results
of the input-output operation. This character 111ill contain a value
as fol lo111s:

If no further information is available concerning the
input-output operation, then status ketJ 2 contains a value of
'0'.

When status kev 1 contains a value of 0, indicating a
successful completion, status kev 2 mav contain a value of 2,
indicating a duplicate kev. This condition indicates:

For a READ statement, the kev value foT the curTent kev of
reference is equal to the value of that same key in the
next record 111ithin the cu?Tent ket of reference.

For a WRITE or REWRITE statement, the recoTd Just 111ritten
cTeated a d.uplicate kev value for at least. one alternate
record k•t for 111hich duplicates are allo111ed.

When status key 1 contains a value of '2' indicating an
INVALID.KEV condition, status ktV .,Z is:

'1' iruficatin9 a se11,uence e1"1'01" fo,- a sequentiallt
accessed indexed file. The ascending sequence ,-e,uirement
of successive 1'ttco1'd key values has been violated OT the
1'ecord key value ha~ been changed bv the COBOL program
bet111een the successful execution of a.READ statement and
the execution of the n•xt REWRITE statemeni: for that file.

PAOE 133

'2' indicatint a duplicate key value. An attempt has been
made to write a record that would create a duplicate kev.

'3' indicating no record found. An attempt has been made
to access a record, identified bV a key, and that record
does not e~ist in the file.

'4' indicating a boundary violation. An attempt has been
made to write bevond the externallv-defined boundaries of
a file.

When status kev 1 contains a value of '9' indicating an
opet'ating svstem e:rroT condition, the value of status kev 2
is:

'0' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

'1' indicating file not·6pened. This condition indicates
an attempt has. been made to execute a deletf, start,
unlock, ,-ead, write, rewPi te, OT' c H,•e statement on a file
that is not currently open.

'2' indica1.ing file not closed. An attempt has been made
to execute an OPEN statement on a file that is currentlv
open .•

'3' indicating file not available. An attempt has been
made· to execute an OPEN statement for a file closed with
LOCK.

'4' indicating invalid open. An attempt has b1ten made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters .

.,5, indicating invalid device. This condition indicates
that an attempt has been made to open a file havin.1
para,neters <e.g., open mode or 6rganiiation which conflict
with 'tha device assignment <RANDOM; INPUT, PRINT, ... >>.

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement afte1' the occur'l'ence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

PAGE 134

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new ~ecord
length is different from that of the record to be
rewritten.

'B' indicating
indicates that
data. This is a
recovery at the

an invalid indexed file. This condition
the indexed file contains inconsistent

catastrophic error from which there is no
present time.

The INVALID KEV Condition

The INVAL.ID KEV condition can occur as a result ol the execution
of a START, READ, WRITE, REWRITE, or DELETE statemeni;.c.

When the INVALID KEV condition is recognized, the Svstem takes
these actions in the following order:

A value is placed into the FILE STATUS data item, if specified
for this file., to indicate an INVALID KEY condition.

1# the INVALID KEY phrase is
causing the condition,. control is
KEY imperative statement. Anv USE
file is not executed.

specified in the statement
transferred to the INVALID
procedure specified for this

If the INVALID KEV phrase is not specified, but a USE
procedure is specified, either explicitlv or implicitlv, for
this file, that procedure is ••ecuted.

When the INVALID KEV condition occurs, execution of the
input-output statem•nt which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

Th.e AT END condition can occur as a T'esult of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsucct,ssful.

PROCEDURAL STATEMENTS

The ACCEPT ... FRON Statement

The ACCEPT statement causes the information re,uested to be
transferred to the data item specified by identifier-! according
to the rules of the HOVE statement. DATE, DAY, and TINE are
conceptual data items and, therefore, are not described in the
COBOL program.

FORMAT

ACCEPT identifier-! FRON <DATE>

<DAY>

(TIME}

DATE is composed of the data elements year of century, month of
year, and day of month. The se4uence of the data element codes is
from high order to low order (left to right>, vear of century,
month of year, and day of month. Therefore, July 1, 1979 would be
expressed as 790701. DATE, when accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of
vear. The se4uence of the data element codes is from high order to
low order (left to right) year of century, day of year. Therefore,
July 1, 1979 would be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length;

PAOE 1~7

TINE is compos•d of the data elements hou-rs, minutes, seconds and
hund-redths of a second. TIME is based on elapsed time afte-r
midnight on a 24-hour clock basis--thus, 2:41 p.m. would be
expressed 14410000. TINE, when accessed b~ a COBOL prog-ram behaves
as if it had been desc-ribed in a COBOL prog-ram as an unsigned
alemantat'~ numeric intege-r data item eight digits in length. The
minimum value of TINE is 00000000; the maximum value of TIME is
23595999.

ACCEPT ... FROM Examples

ACCEPT YEAR-DAY FROM DAY.
ACCEPT CLOCK FROM TIME.

The ACCEPT Statement <Terminal I-0)

The ACCEPT statement causes low volume data to be accepted from
the CRT terminal and transferred to the specified data item.
ACCEPT statement phrases allow the specification of position, form
and format of th• accepted data.

FORMAT

ACCEPT <identifier-1 C,UNIT <identifier-2}]
------ ---- <literal-1 >.

C,LINE <identifier-3}J [,POSITION {identifier-4}]
<literal-2 > -------- {literal-3 >

C,SIZE {identifier-5}] C,PROMPT Clite-ral-5Jl
-··-- <l i tera 1-4 > ------

t, ECHOJ C,CONVERTJ C,TABJ t,ERASEJ C,NO BEEP]

C, OFFJ C, <HlQH}J C, BLINK] C, REVERSE]> ...

{LOW>

C,ON EXCEPTION identifier-6 imperative-statement]

The ACCEPT statement causes the transfsr of data ,rom the CRT
device. This data replaces the contents of the data item named btJ
identifie.1"..,.1. The receiving data item mustdhave usage OHFLAY if
ECHO is specifiedi otherwise, it may have anv usage. •/4Jcept; INDEX .

..
When an ACCEPT statement contains more than one ope:Pand; the
values are t1'ansfeT'red in the seqvence in Which the oper'ands at'e
encounte1red. ACCEPT phrases apply to the previously specified
ident.ifier-1 ·onlt. A subseqvent identif•i•T'-1 in the same ACCEPT
statemen,t wi 11 be tnuated as i .P no p1'-evious ph1rascts have/ 'been
specified.

An ACCEPT statement mav ,contain no motte than one; ON l:!XCEPTION
pht'ase, and if pr,esent it must be associated with :ffhe J.Jirst < OT'
onlu > identi,ier-1.

Note: Features which -re~uire support of the
system and/o-r terminal hardware may not
all sustems. Any features which are not
compile correctly, bu~ will be igno1'ed
the User's Quide for specific details.

PAQE 139

host op.erating
be s.upported on
supported will
at runtime. See

The UNIT PhT'ase

The UNIT phT'ase must be the first phrase if used. The other
phT'ases may be t11T'itten in any ordeT'.

The v,11lue of identif'ier-2 or liteT'al-1 in ,the UNIT phT'ase
specifies the station identifier of ,the CR:l .Prom which the data is
to b.e accepted. If the UNIT phrase is omitted, the CRT which
executed the program will be accessed ..

The LINE PhT'ase

The value of identifier-3 or l.iteral-2 in the LINE phrase
specifies the line numbeT' from which the data is to be accepted
from the screen of the CRT terminal, with 1 being the top line. If
the value is greater than the number· .of lines on the CRT screen,
it is adJusted to the maximum line numbeT'.

If the value is zero or the LINE phTase is not pT'esent in an
ACCEPT statement, th•n data is to be accepted IT'om the next line
below the cuT'Tent position of ttut c,urtsor. on the CRT screen uni•••
th• value specified in the POSITION phrase is also zeT'o, in which
case the data is to be actepted from the line at the cuT'rent
position of the cuT'sOT' on the CRT screen.

The POSITION PhT'ase

The. value of· iffentifieT-4 or l,i.ter•l-3 in tlu, POSITJ.-, ph1'ase
specifies ·th• ntMtber ol t1't• du•t.acte::r positions to .whh:b' the
curs.e;I" is t,o •ie1,ftasitiened' wit:llin ;the .s·pkff'tell 1.i4'ref l"ftiOr to ttte
acteptint:. of data. f'Tontl't.he ·~RT, te-rminah td th l tu~i•g.; t.11.e •lelt•ost
cbar,act•? .position within a line. If t;he valu• is l't•ateT' than the
lltaXimum n.1.HlbeT' o,fl cha'tact•,-r• wi.tJUn a line :on ttte: CRT scree'ft,; it
is acf Jv,ted to the maxj.llUe, c,tt1H•acteT' .numb.a,-.

If tit•• POSJTIDN phras• is not specif:.ted, a valve o,f. 11 t.s assueed
fol'" th:e .. fiT'St accep,te41 opeT'and •~d 0 ··fol' •ach add:i tional opeT'and
accepted in tbe same statement. If a value of 0 is sp.ecifi•1'·• · the
data is to be accept•d sta'rting at the next field on the CRT
ICJ"e'.en <su?tint ·chaTacte1' position plus size of last ACCEPT o,
DHFL.AY1t.

The SIZE Phrase

The value of identifier-5 or literal-4 in the SIZE phrase
specifies the maximum number of characters to be accepted f:'rom the
CRT terminal, over"riding the Data Division definition of the
field. If the SIZE phrase is not p'resent or a value of O is
specified, then the size of identifier-!, <identifier-5, ... > is
used. A size greater than 80 is treated as •~ual to 80.

The size of the •ccepted field is determined bv the SIZE phrase.
The number of characters transferred from the CRT is less than or
eq,ual to the size of the accepted field. Input is terminated bv
depression of the return key <which ts not considered part of the
input). The number of characters actually input is the size of the
source in the following:

If the receiving item is not numeric, the accepted input is
stored according to the rules of the MOVE st~tement f'or an
alphc1numeric source and destination. If the receiving item is
described JUSTIFIED RIQHT, the clause will apply to the MOVE
rules.

If the receiving item is numeric, the accepted input is stored
according to the rules of the MOVE stateJnent for a numeric
source and destination. If the CONVERT phrase is not
specified, the source has the same scale as ,ha receiving
item. If th• r•ceivint item has a trailing sigh and the
CONVERT phrase is not specified, the input must con'tafn digits
followed IHJ a· sigft characte'r. If . ·the CONVERT phrase is
specified, then the input is conve'rted acco'rding to the rules
of the CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the ~ev word PROMPT in an ACCEPT statement causes
the data to be accepted with prompting. The action o, prompting is
to displav fill characters on the CRT screen in the positions fT'om
which data is to be accepted. Literal-5 must be a single characte1'
nonnumtf,-tc lite1'a·1 which specifies the fill cha1"acter to be used
in prompting. If lite'ra"l-5 is omitted in the PROMPT ph1'ase, then
an underscore will be used as the fill characteP.

Wh•n the PRONPT ph1'ase is not specified, then the data is to be
accepted withou.t prompting; the original conteJ'lt• of t'he field on
the CRT will be undisturbed befo're accepting input.

PAQE 141

The ECHO Ph1'ase

The presence of the key word ECHO within an ACCEPT statement
c~uses the contents of identifier-1 to be displayed on the screen
of the CRT terminal. Conversion (see CONVERT Phrase>, decimal
alignment, and Justification are performed prior to display. If
the specified size is greater than the size of the receiving
data-item,, the data-item .is displayed right Justified in the
accept field with leading blanks. If the speiified size is less
than the size of the receiving data-item, the display is truncated
on the right. When the ECHO phrase is .not specified, the o1'iginal
input data remains in the accept field.

The CONVERT Phrase

lf the receiving data-item is numeric, the p1'esence of the key
WD1'd CONUERT within an ACCEPT st.atement causes the conversion of
an accepted fi.eld tQ. a trailing-signed .decimal field. The
t1'ailing-sign decimal field is then stored in identifier-1. The
conve1'sion is accomplished by a left-to-1'ight scan and the rules:

Set the sign a1cco1'ding to t.he rightn,ost, sign given in the
input or po~i~~ve if noJign is presenj.

Set the
i.nput or
IS COMMA
replaces

scale according to the r'ightmost period giyen in the
to zero if no pe,-iod is pT'esent. If the DECJMAL POINT
c laus• ·"'as specified in th• sou-r;ce p-rog,-,;am, a comma
the pe-riod ~n d:.termining the $Cale.

Delete all nonnumeric chaT'acters fT'om the accepted fti.t1ld.

When t·he CONVERT phrase is not specified, OT' the receiving
data-item is not numeric, then the data is to be stor.ed without
the above conversion.

The TAB Phrase

The presence of the kev word TAB in an ACCEPT statemen:t causes a
wait for a tab, T'eturn or backspace lev in rea~hlng the end of the
input field; the return will then terminate input, the backspace
character will position the cursor back one character, the tab
wi 11 reposition the cursor to the beg i nnin.g of th• .field an4 . all
othe1' input will be ignored. If the key word TAB is omitted, ~nput
will autom~ticallv be terminated if the end of the input field is
encounteTed.

PAGE 142

The ERASE Phrase

The presence of the key word ERASE within an ACCEPT statement
causes the screen of the CRT to be erased prior to cursor
positioning. When the ERASE phrase is not specified, then the
screen is not erased prior to cursor positioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes supression of the beep signal upon cursor positioning. If
the key words NO BEEP are omitted, a beep signal will occur upon
cursor positioning prior to data input.

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement causes
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIQH/LOW Phrase

The presence of the key word HIQH or LOW causes the PRONPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIQH or LOW is not specified, the default displav is HIGH.

The BLINK Phrase

The presence of the key word BLINK causes the PROMPT character,
and any displayed data, to be BLINKed. When BLINK is not
specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT character,
and any displayed data, to be displayed in a reverse image mode.
When REVERSE is not specified, normal display is provided.

PAQE 143

Th• ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the impe-rative-statement to be
executed if an invalid cha-racter is enteTed. l'.he invalid cha'racter
C in ASCII fo-rmat > wi 11 be placed in i denti f ie,--6 'Prior to
execution of th• impeT'ative-statement. The invalid cha-racteT' mav
be deteTmined bv declaTing identifier-6 as USAQE COMP-1 and
testing foT its ASCII value.

When ON EXCEPTION and CONVERT are both specifie~ and a conversion
error occurs, an error code of "98" is -returned in identifier-6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION 0,
PROMPT, ECHO.

ACCEPT VEAR, LINE YR-LN, POSITION YR-POS.
NONTH, LINE MN-LN, POSITION MN-POS.

PAOE 144

The ADD Statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

FORMAT 1

ADD {identifier-1> C,identifier-2]

(literal-1 > C,literal-2 J

TO identifier-m CROUNDEDl

[;ON SIZE ERROR imperative-statement]

FORMAT 2

ADD <identifi•r-1>, {identiflier-2> C1identiflier-3J

(literal-1 > (literal-2 > C,literal-3 J

QIVINO identifiel"-il CROUNI>EDl ------
C;CJN SI4ZE ERROR imperative-statement]

FORMAT 3

ADD <COffRESPONDlNQ) identifier-1 TO id•ntificn•-2 CROUNDEDl

-----·-·---------- --
<CORR > -----'
C; ON SIZE ERROR imperative-stat•mentl

---- ----------

In Format 1, the values of the operands precedlng the wol"d TO are
added together, then the ~um is added to the current value of
identifier-m sto,-ing the resuJtt immediately into identifier-m.

. ~

In Format 2, the0 values ofl tbe operands p-re~tfcling· the word QIVINQ
are added togethet-, then the sum is stcired as the new value ofl
identifier-m.

PAQE 145

In Formats 1 and 2, each identifier must refer to an elementarg
numeric item, except that in Format 2 identifier-tn following the
word QIVINO must refer to either an elementary numeric item or an
elementarv numeric edited item.

In Format 3, data items in identifier-I are added to and stored in
the corresponding data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement mav optionallv include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size pl':ovided
for the resultant-identifier. When rounding is rectuested, the
absolute value 0;f the resultant-identifier is .increa,ed bv one
(1) whenever the most significant digit of the excess is. greate1'
than or •ctual to five (5);.

When the low-order intege,:- positions in a resultant identifie1' a1'e
represented blJ the cha1'actel' 'P' in the picture fo,- that
resultant-identifie1', 1'0Unding 01' truncation occu1's •elative to
the rightaost int~1•:r position fo,- 11thich sto••g• is allocated.

The SIZE ERROR Ph,-ase

If, ilfter apprcip.•.i•t• ~•ci.1Ml poi.nt al ign-.ent, .'.tbe, absolute value
of the res~lt exceed• ti• largest value that can be contained in
the associated •esultant-identifier, a size erro,- condition
exists. If the ROUNDED phrase is specified, •ounding takes place
befo•• checking for size erro•.

If the CORRESPONDINO phrase is specified,
individual additions produces a size e1'ror
impel"ative-statement is not executed until all
additions are completed.

and anv of the
condition, the

of the individual

Ifl the resul.tant-identifier h.as COMPUTATIONAL'"".3 usage,
is correctlv detected onlv for data items declared
lt1tngth picture, c la.use. Therefor.• •1.1 ~DHP-3 .data items
dee la1'e.d with an odd numbe'f'. of characJer positions.

PAQE 146.

si zle eT"r01"
with an odd

should be

Ifl the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value ofl the l'es.ultant-identiflier is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The CORRESPONDINQ Phrase

If the CORRESPONDINQ phrase is used, selected items within
identifier-1 are ADDed to, and the, result stored in, the
corresponding items in identiflier-2.

Data items referenced by the CORRESPONDINQ phrase must adhere to
the following rules:

A data item in identiflier-1 and a data item in identiflier-2
must not be designated by the kev word FILLER and must not
have the same data-name and the same ~ualifliers up to, but not
including, identifliers-1 and identiflier-2.

Both of the data items must be elementary numeric data items.

The description of identiflier-1 and identiflier-2 must not
contain level-number 66, 77, or 88 or the USAQE IS INDEX
clause.

A data item that is subordinate to identiflier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAQE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAQE IS INDEX clause. However, identifier-1 and
identifier-2 mav have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY>

ADD JOHNS-PAV, PAULS-PAY, ALBERTS-PAY
,uvINQ COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR QO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT CX)
TO ELEMENT CY>.

ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR QO TO ERR.

PAQE 149

The ALTER Statement

The ALTER statement modifies a
opeT'ations.

FORMAT

predetermined sequence

ALTER procedure-name-1 TO [PROCEED TOJ procedure-name-2

C,procedure-name-3 TO CPROCEED TOJ procedure-name-4l ... ~-------

of

Each procedure-name-1, procedure-name-3, ... , is the name of a
paragraph that contains a single s•ntence consisting of a 00 TO
statement without the DEPENDING phT'ase.

Each procedu,-e-name-2, pT'ocedure-name-4, ... ,
paT'agT'aph OT' section in the PT'oceduT'e Division.

is th• name of a

Exe.cution of the ALTER 5tatement modifies the 00 TO statem•nt in
the paragraph named p,-ocedure-name-1, protedure-name-3, ... , so
that subsequent executions of the medified 00 TO statements cause
transfer of control to procedure-name-2, p~ocedure-name-4, ... ,
respectively. Modified 00 TO statements in independent segments
mav, under some ciT'cumstances, be returned to their initial
states.

A QO TO statement in a section whose segment-numbeT' is greater
than or e4:Lual to 50 must not be referred to bv an ALTER statement
in a section with a different segment-number.

PAQE 149

The CALL Statement

The CALL statement causes control to be transferred from one
obJect program to another, within the run unit.

FORMAT

CALL <ide.ntifier-1> CUSINQ data-name-1 C, data-name-2l ... l
(literal-1 > -----

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 or
identifier-1, the 'called' program.

Literal-t must be a nonnume1"ic lite1'al.

Identifier-1 must be defined as an alphanumeric data item such
that its value can be a program name.

The called program can be another COBOL program or an assembly
la.n9uage progr.11m. RefeT to the Use? 's Guide for specific deta,i la.

Called programs. may contain· CALL statements. However, a called
protram mulSt, ·,•et contain a CALL statement that di'l"ectltJ or
intUrectlv call• the calling pl"ogram.

The CALL stattHnent mav appear anywhere within a segmented p1'0gram.
When a CALL statement appears in a section with a segment-number
g-reater thaa or •tual to '°" the EXIT PROQRAM , state1urnt 'returns
contTol to the calling program.

The USING Phrase

The .data-nam•• specified bv the USING phrase of the CALL statement
indicate those data items availabl• to a calling program that may
be referred to in the called program. The order of appearance of
the data-names in the USING phrase of the CALL statement and the
USING phrase in the Procedure Division header is critical.
Corresponding data-names refer to a single set of data which is
available to the called and calling program. The correspondence is
positional, not by name. In the cast of index-names, no such
correspondence is established. Index-names in the cal led and
calling program always refer to separate indices.

PAOE 150

The USING phrase is included in the CALL stateaent only i, there
is • USINQ phrase in the Procedure Division header of the called
prograa, and the nuaber of operands in each USING phrase aust be
identical.

Each of the operands in the USING phrase aust have been defined as
a data itea in the File Section, Working-Storage Section, or
Linkage Section, and must have a level-number of 01 dr 77.
Data-name-1, data-naae-2, ... , may be ,ualified when they
reference data items defined in the File Section.

CALL Examples:

CALL "8UBPRQ1 11 •

CALL REORJ)ER
USING T'ABLE-, INDEX-1, RESULT.

PAGE UH

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 C<REEL> [WITH NO REWINDll

{UNIT>

[WITH {NO REWIND} J

<LOCK >

C,file-name-2 C<REEL> [WITH NO REWINDJ l l ...

<UNIT}

CWITH {NO REWIND> J

<LOCK

The function of a CLOSE statement
the operating s9stem to close
OUTPUT, the operating system also
file.

}

<with no options> is to cause
the file. For files opened for

writes an EOF as it closes the

If a STOP RUN statement is executed pl"ior to closing the fil,tt, the
operating system will close the file without an EDF.

A CLOSE statement may only be executed ~or a file in an open mode.

Once a CLOSE statement has been executed fol" a file, no other
statement can be executed that references that file, eithel"
explicitly or implicitly, unless an inte~vening OPEN statement for
that file is executed.

The execution of a CLOSE statement causes the value of the FILE
STATUS data-item, if any, associated with file-name-1
(file-name-2, ... > to be updated.

The REEL and UNIT Phrases

The CLOSE REEL and CLOSE UNIT statements are documentary only and
mav be included or omitted at the user's discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files assigned to
the pT'inter. It has no effect on other files.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perfoT'm the
CLOSE ,unction and set a flag to prevent the file from being
OPENed again during execution of this pT'ogram.

CLOSE Examples

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153

Th• CLOSE Statement (Relative and Indexed I/O)

The CLOSE statement terminates the processing o, files.

FORMAT

CLOSE file-name-1 [WITH LOCK]

C,file-name-2 [WITH LOCKll

The function
the operating
OUTPUT, the
the file.

of a CLOSE statement <with no options> is to cause
system to close the file. For files opened for
operating svstem also writes an EOF prior to closing

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

The files referenced in the CLOSE statement need not all have the
same organization or access.

A CLOSE statement may only be executed for a file in an open mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that T'efttren-ees that flile, either
explicitly or implicitly, unless an inte?vening OPEN statement for
that file is executed.

The executi'on of the CLOSE st;atement causes the value of the
specified FILE STATUS data item, if any, associated with
file-name-1 Cfile-name-2, ... > to be updated.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set; a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Examples:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BABE WITH LOCK.

PAQE 154

The COMPUTE Statement

Th• COMPUTE statement assigns the value oft an arithmetic
expression to a data item.

FORMAT

COMPUTE identif:ier-1 CROVNDEDl = arith111etic-11xpt<ession

[; ON SIZE ERROR impeT"ative-stateme,ntJ

Identifier-1 must refer to either an elementary numeric item or an
elementary numeric edited item.

An arithmetic exprnsion consisting oft a single identifier OT"
lite-ral provide• a method ofl setting the value of identifier-1
e,ual to the value of the single identifier or literal.

The COMPUTE statement allo111s the user to co111bine al'ithmetic
operations 111ithout the rest-rictions on composite opcn•ands and/or
receiving data items imposed by the arithmetic statements ADD,
SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponentiation is not supported.

The ROUNDED Phrase

The COMPUTE statement mav optionally include the ROUNDED phrase.
If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
identifier-1, truncation is r•lative to the site provided for the
identifier-1. When rounding is re~uested, the absolute value of
the resultant-identifier is increased by one (1) whenever the most
significant digit of the excess is greater than or equal to five
(5).

When the 10111-order integer positions in an identifier-1
represented by the character 'P' in the picture for
identifier, rounding or truncation occurs relative to
rightmost integer position for 111hich storage is allocated.

PAGE 189

are
that
the

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
identifier-1, a size er-ror condition exists. If the ROUNDED phrase
is specified, rounding takes place before checking for size error.

If identifier-1 has COMPUTATIONAL-3 usage, size error is detected
onllJ for data items declared with an odd length picture clause.
Therefore all COMP-3 data items should be declared with an odd
number of character positions.

Division blJ zero always causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the identifieT'-1 is undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value identifier-! is not altered and the
imperative-statement in the SIZE ERROR. phrase is executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED= WAGES* HOURS.

COMPUTE SECONDS= <<<HRS* 60) +MIN>* 60) + SEC.

COMPUTE AVERAGE= TOTAL/ KOUNT
ON SIZE ERROR MOVE OTO AVERAGE.

COMPUTE PAY <DATE) ROUNDED

= RATE * .8.

PAGE 156

The DELETE Statement <Relative and Indexed I-0)

The DELETE statement logically removes a record from a mass
storag.e file.

FORMAT

DELETE file-name RECORD [;INVALID KEY imperative-statementl

After the successful execution of a DELETE statement, the
identified record has been logically removed from the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

The associated file must be opened in the I-0 mode at the time of
execution of this statement.

For files in the se~uential acces~ mode, the last input-output
statement executed lor file-na111e prior to the execution of the
DELETE statement must have been a successfullV executed READ
statement. The svstem logically removes from the file the record
that••• accessed bv that READ statement.

For a file in -random or ••dvnamic access mode, the system logicallV
removes from the file that record identified bv the ~ontents of
the kev data item associated with file-name. If the file does not
contain the record specified bv the keg, an INVALID KEV condition
exists.

The execution of the DELETE statement causes the value of the
specified FILE STATUS data item, if anv, associated with file-name
to be updated.

The INVALID KEY Phra•e

The INVALID KEY
statement which
mode.

phrase must not be specified for a DELETE
references a file which is in se4uential access

The INVALID KEY phrase must be specified for a DELETE statement
which re:fe-rences a file which is not in sequential access mode and
for which an applicalfle USE procedure is not specified.

The cuTrent record pointer is not affected b9 the execution ,,of. a
DELETE statement.

PAQE 157

The DISPLAY statement causes low volume data to be displa,Ved on
the specified CRT terminal. DISPLAY statement phrases allow the
specification of position, form and format of the displayed data.

FORMAT

DISPLAY <<identifier-1> C,UNIT {identifier-2>J

-Cliteral-1 > -Clite..-al-2 >
C, LINE -Cidentifier-3>J C, POSITION -c•identifliet--4}J

{literal-3 } <literal-4 >
C,SIZE <identifier-5}J £,BEEPJ C,ERASEl>

-Clite,-.al-5 >

C,<HIQH}J C,BLINKJ C,REVERSEl>
_,.. ---------

<LOW>

The DISPLAY statement causes the contents of each opeT'and
(identifier-1 OT' literal-1) to be tT'ansferT'ed to the CRT device in
the order H.sted. The sending da.ta u,em must have D.JSPt.AY usage.

When a DISPLAY statement contains more than one operand, the
values of the opeNtnds a"re transfen•ed ,in the seq_uence in which
the ope,-.ands a1"e encountered.

Note: Featvres which t'equil'e support of the host opel'ating
system and/or terminal hardware mav not.tie supported on
all systems. Anv features which are not supported will
compile correctly, but will be ignored at runtime. See
the User's Quide for specific details.

The UNIT Phrase

The UNIT phrase, if specified, must be written first. The other
phrases mav be w..-itten in anv order.

The value of identifier-2 or litel"al-2
spec ifieSi the ,•tat ion identifier of the CRT
to be displayed. If the UNIT phrase is
,executed the p1"og,-am wi 11 be •ccessed.

PME.1H

in the UNIT pbl'a••
upon which the data i•
omitted, the CRT which

The LINE Phrase

The value of identifier-3 or literal-3 in the LINE phrase
specifies the line number upon which the data is to be displaved
on the screen of the CRT terminal, with one being the top line. If
the value is greater than the number of lines on the CRT screen,
it is adJusted to the maximum line number. If the value is 1er-o or
the LINE phrase is not present in a DISPLAY statement, then data
is to be displaved on the next line below the current position of
the cursor on the CRT screen unless the value specified in the
POSITION phrase is al.so zero, in whi.ch ci11se the data is to be
displaved on the line at the current position of the cursor on the
CRT screen. If incrementing to the next line generates a line
number greater than the maximum number of lines on the CRT screen,
the new line is displaved at the bottom.

The POSITION Phrase

..
The Vt11lue of identifi•r-4 or liteTal-4 in the POSITION p.h,-ase
specifies the number ~f the character to which the cuTsor is to be
positioned within the specified line prior to the displi11ving of
data on the screen of the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than th•
maximum number of characters within a line on the CRT screen, it
is adJusted to the max!mum character number.

If the PQ$ITION phr••e is not.specified, a v•lue of one ~s assumed
f~r the first displ•ved ope.,.and and zeT'o fo.~ each adcUtional
operand displayed in the same statement. If• value of zero is
specified, the data is to be displaved starting at the next field
on the CRT screen <starting character position plus size of the
last ACCEPT or DISPLAY>.

The SIZE PhT'ase

The value of identifier-5 or literal-5 in the SIZE phT'ase
specifies the number of chaT'acters to be displaved on the .screen
of the CRT terminal, oveT'riding the Data Division definition of
the field. If the SIZE phrase is not present or a value of zero is
specified, the size of identifier-1 or li,teral-1 is usect. Ifl
literal-1 is a figu'rative constant, the lite'f'al has a size of one.
A size greater than BO is treated as equal to SO.

If the size of the displav field is less than the size ~• the
sending data item, only the leftmost characters are displayed. If
the specified size is g1'eater than the size of the sending date
item, the results are unpredictable. If the senling item is a
figurative constant, the constant fills the displav field. No
conve,-sions are made in the transfe,- to the displav field.

The BEEP Phrase

The presence • of the key 1111ord BEEP •111i th in a DISPLAY statement
c•uses a~be•p signal to occur on cur•or positioning p1'ior te the
displav of the data. If the BEEP ke1:1 1110T'd is omitted, no signal is
given on cu1'so'i" positioning.

The ERASE Phrase

The presenc• of th• key word ERASE within a DISPLAY stat•ment
causes the screen of the CRT terminal to be erased befo•• the
content· of identifier•! or literal-1 is displ.tved ·on 'tfle screen.
When. th• ERASE pin•••• is not specif ietd, 'thttn the ·1cv•en ls not
e-rased p'l'io't to th• display of the d:ata.

The HIQH/LOW Phrase

The pr•sence of HIQH ·or LOW causes the data to be dist1iayercf at the
spetif.ied intensitv. When HIQH '01' LOW is not sp'ecilieth tfut
de#ault display is HIQH.

The BLINK Ph-rase

The pr•s•nce of thekev 111ord BLINK c•uses the displayed data to be
BLINKed. the normal mode is no bl ink.

The REVERSE Phrfte

the REVERSE key 1110Td causes the dat• to be diS:played in REVERSE
video. The normal mode is no revers,e.

PAOE 160

DISPLAY Example~

DISPLAY "FLIOHT ARRIVINQ AT QATE 11 , LINE FLT-LN,
POSITION 1, ERASE; GATE-NUMBER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE: ".

DISPLAY CRT-HEADER LINE 1 ERASE.

DISPLAY ZEROES SIZE 5.

DISPLAY GUOTE.

PAOE 161

The DIVIDE Statement

The DIVIDE statement divides one numeric data item into another
and stores the ~uotient.

FORMAT 1

DIVIDE {identifier-1} INTO identifier-2 CROUNDEDJ __ """!-___ _

<literal-1 }

[;ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE <identifier-1} INTO <identifier-2>

<literal-1 > {literal-2 }

QIVINQ identifier-3 CROUNDEDJ

C;ON SIZE ERROR imperative-statement]

FORMAT 3

DIVIDE <identifier-1> BY <identifier-2}

<literal-1 > {literal-2 >
QIVINQ identifier-3 CROUNDEDl

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-1 or literal-1 is divided
into the value of identifier-2. The value of the dividend
(identifier-2) is replaced b~ this ~uotient.

In Format 2, the value of identifier-1 or literal-1 is divided
into the value of identifier-2 or literal-2 and the result is
stored in identifitn•-3.

PAOE 162

In Format 3, the value of identifier-1 or literal-1 is divided by
the value of identifier-2 or literal-2 and the result is stored in
identifier-3.

Each identifier must refer to an
that any identifier associated
to either an elementary numeric
edited item.

elementary numeric item, except
with the GIVING phrase must refer
item or an elementary numeric

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the -resultant-identifier. ··when rounding is rer,.uested, the
absolute value of the resultant-identifier is increased by one
<1 > whenever the most significant digit of the excess .is g·,-eater
than 01' eq,ual to five (3).

When the low-order integer positions in a 1'esultant identifier are
represented by the character 'P' in the pictu'l'e for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the •ssociated ,-•sultant-identifier, a size ttT''l'or condition
exists. If the ROUNDED ph-r.iase is specified, rounding takes place
befo,-e checking for size e'l'ror.

If the result•nt-identifier has COMPUTATIONAL-3 usage, size e'l'ror
is detected onlv for data items declt111'ed with an odd length
pictu'l'e clause. Therefo'l'e all COMP-3 data items should be decla,-ed
with an odd number of ch•-racter positions.

Division bv zero alwav• causes• size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the v•lue of the t'esultant-identifier is
undefined.

PAQE 163

If the SIZE ERROR ph1"as• is specified and• size error condition
exists. th• value of the resul't;ant-identiflier is not altered and
the imperative statement in the SIZE ERROR phrase is executed.

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LOAD
QIYINQ MORRISS-WORK-LOAD

DIVIDE TOTAL-WORK-LOAD BY 2. 5
QIVINO ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR QO TO ALFRED-GUIT.

DIVIDE 2. 5 INTO TOTAL.

PAOE 164

The EXIT Stateaent

The EXIT stateaent pT"ovides a common end point for a series o,
procedures or the logical end of a called program.

FORMAT

EXIT CPROQRAMl.

The EXIT statement must appeaT" in a sentence b~ itself.

The EXIT sentence must be the onl~ sentence in the paT'agT"aph.

An EXIT statement without the word PROQRAM set"ves onlv to enable
the useT' to aasign a procedure-name to a given point in a pT'ograa,
Such an EXIT statement has no other effect on the compilation or
execution o, the program.

An execution of an EXIT PROQRAM statement in a CALJ.,.ED program
causes control to be passed to the cal ling pT'ogT'am. Executf.on of
an EXIT PROQRAM statement in a program which is not cal.led .b.ehaves
as if the statement we're an EXIT statement without the word
PROQRAM.

PAOE 165

The 00 TO Statement

The 00 TO statement causes control to be transferred frocn one part
o, the Procedure Division to another.

FORMAT 1

00 TO procedure-name-1.

FORMAT 2

00 TO procedure-name-1 C,procedure-nacne-21 ... ,

procedure-name-n DEPENDINO ON identifier-'!.

If a Forntat 1 00 TO statement appears in a consecutive secs.uence of
imp,ttrative stat1tments within a sentenc•, it must appear as the
last statement in that seq,uence.

When • Format 1 00 TO statement is executed, control is
transferred to procedure-nilme-,1 or to another procedu-re-name if
the 00 TO statement has been modified blJ an ALTER statement.

When a paT'agT'aph is referenced bv an ALTER
paragraph can consist onlv of a paT"agT'aph header
Format-1 .QO TO statement.

The DEPENDINO ON Phrase

statement, that
followed bQ a

When a Format 2 00 TO statement is executed, control is
transfeTT'ed to procedure-name-!, procedure-name-2, etc., depending
on the value of the identifier-1 being 1, 2, ... , n. If the value
of the identifie-r-1 is anvthing other than the positive or
unsigned intef&T'S 1, 2, ... , n, then no transfeT' occurs and
control passes to the next statement in the normal sequence for
execution.

Identifier-1 is the name of a numeric integer elementary item.

PAOE 166

The IF Statement

The IF statement causes a specified condition to be evaluated. The
subse~uent action of the obJect program depends on whether the
value of the condition is true or false.

FORMAT

IF condition; <statement-1 > {;ELSE statement-2 >

<NEXT SENTENCE> {;ELSE NEXT SENTENCE>

Statement-1 and statement-2 represent either an imperative
statement or a ~onditional statement, and either may be followed
by a conditional statement.

' When an IF statement is executed, the following transfers of
control occur:

If the condition is true, statement-1 is executed if
specified. If statement-1 contains a procedure branching or
conditional statement, control is explicitly transfe~red in
accaT'dance with the rules of that statement. If st~t~nHtnt-1
does not contain a procedure branching or conditional
statement, the ELSE phT'ase, if specified, is ignored and
control passes to the next ex•cutable sentenc•.

If the condition is true
specified instead of
specified, is ignored
executable sentence.

and the NEXT SENTENCE
statement-1, the ELSE

and control passes_ to

PAQE 167

phrase is
phrase, if
the next

If the condition is false, statement-1 or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching or
conditional statement, control is explicitlv transferred in
accordance with the rules of that stateaent. If statement-2
do•• not contain a procedure branching or conditional
statement, control passes to the neit executable sentence. If
the ELSE statement-2 phrase is not specified, statement-! is
ignored and control passes to the next executable sentence.

If the condition is false, and the ELSE NEXT SENTENCE phrase
is specified, statement-! is ignored, if specified, and
control passes to the next executable sentence.

Statement-! and/or statement-2 mav contain an IF statement. In
this case the IF statement is said to be nested.

IF statements ldithin IF statements mav be considered as paired IF
•nd ELSE combinations, proceeding fT'om left to f"ight. Thus, an,
ELSE encountered is considered to applt to the immediately
preceding IF that has not been alreadv paired with an ELSE.

The ELSE NEXT SENTENCE phrase mav be omitted if it iamediatelt
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC,
MOYE CHAR-STR TO ALPHA-STR;

ELSE IF CHAR-STR JS NUMERIC,
NOYE CHAR-STR TO NUM,
DISPLAY NUM;

ELSE NEXT SENTENCE.

IF NUN• OLD-NUN 00 TO RE-SET.

IF ALPHA-STR NOT• "TEST"
ADD 1 TO ERROR-CNT.

IF NUN< LIMIT, ADD 1 TO NUM.

IF NUN IS LESS THAN LIMIT
ADD 1 TO NUN.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAOE 168

The INSPECT Statement

The INSPECT statement provides the abilitv to tall~ (Format 1),
replace (Format 2), or tall~ and replace (Format 3) occurrences of
single charact•rs or groups of characters in a data item.

FORMAT 1

INSPECT identifiar-1

TALLYING identifier-2 FOR <<ALL > <identifier-3>>
-------- (literal-1 >

<<LEADING> >

< CHARACTERS)

-.... ---------
C<BEFORE) INITIAL <identifier..,.4J>J

------ <literal-2 >
<AFTER>

FORMAT 2

INSPECT identifier-1

REPLACINQ <<ALL > (identifier-5>> BY (identifier-6)
------- --- <literal-3 > (lite-ral-4 >

<<LEADING> > ----... -----
<<FIRST > ----·--
< CHARACTERS

>
)

[(BEFORE> INITIAL <identifier-7>l
------ <literal-5 >

<AFTER>

PAOE 169

FORNAT 3

INSPECT identifier-1 _...,..., ____ _

TALLYINQ identifier-2 FOR <<ALL > <iden.tifier-3>>
-------- {literal-1 >

<<LEADINQ> >

< CHARACTERS)

C<BEFORE> l.NITIAL -Cidentifier-4>]
------ {literal-2 >

<AFTER>

REPLACINQ <<ALL > {identifier-5>> BY {identifier-6>
--------- --- <literal-3 > <lite'Pal-4 >

<<LEADINQ} >

<<FlRST > -·--< CHARACTERS

>

> ..._ _____ _.. ____ _

C<BEFORE) INITIAL {identifier-7>l
------ {literal-5 >

<AFTER>

.Jdentifier-1 must l'ef:erence either a gt'oup. i tttm or ang categorlJ of
eleae.nt•rv item, deu:ribed (either iaplici1:lt or e,rplicitl1J) ••
usage is DISPLAY.

Identifier-3 ... identifier~n
alphabetic, alphanumeric
implicitly or explicitly) a•
cha'l"acter.

must 1"efe'P•nce eithe-r an elementaru
01' numeric item desc'l"ibed <eithel'
usage is DISeLAY and a size of· one

Each litel'al may be eithel' a fiturative c.ons:tant <which is tT'eated
as a one-charactel' data item> or a nonnumeric lite,-al one
character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection <which includes the comparison cvcle, the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallving and/or replacing> begins at the
leftmost character position of the data item refe'l"enced blJ
identifier-I, -rega1"dless of its class, and proceeds from left
to right to the rightmost cha~act•~ position•• d•scribed in
gene~al -rules 4 throu9h ~

PAOE 170

2. For use in the INSPECT statement, the contents of the data
item referenced bv identifier-1, identifier-3, identifier-4,
identifier-5, Nentifier-6 or identifier-7 will be treated as
follows:

•· If anv of identifier-1,
identifier~5, identifier-6,
as alphanumeric, the INSPECT
of each such identifier as a

identifier-3, identifier-4,
or identifier-7 are described

statement treats the contents
charac tar-string.

b. If anv of identifier-1, identifier-3, identifieT'-4,
identifier-5, identifier-6, or identifier-7 are described
as alphanumeric edited, numeric edited or u•si~ned numeric,
the data item is inspected as though it had been redefined
as alphanumeric <see general rule 2a> and the INSPECT
statement had been written to reference the redefined data
item.

c. If anv of the identifiel--1, identifier-3, identifier-4,
identifier-5, identifier-6, OT' identifieT'-7 are described
as 'Signed numeT'ic, th• data item is inspected as though it
had been moved to an unsigned numeT'ic data item of the same
length and then t.he T'ules in geneT'al T'Ule 2b had been
app 1 ied. <SiH th• MOVE statement. >

3. In geneT'al T'ules 4 thT'ough 10, all references
liteT'al-2, liter•l-3, literal-4, and literal-5
to thetcontents of the data item refeT'enced bg
i dentif ier-4, idehti f feT'-5, identi ftie,--6, and
respectivelv.

to literal-1,
applg eq_ualllJ
id•ntifieT'-3,
>.dentifie-r-7,

4. I)u,-in9 inspett:tion of the contents of the data item T'efeT'enced
bv identifieT'-1, ea,ch properlv matched occurT'etlce of literal-1
is tallied <Fo-rmats 1 and 3) and/o'r each pT'opeT'llJ matched
occuT'rence of liteT'al-3 is replaced by lite-ral-4 <Fo~mats 2
and 3).

5. The compaT'ison operation to deteT'mine the occu~rences of
liteT'al-1 to be tallied and/or occurrences of liteT'al-3 to be
T'eplaced, occuT's as follows:

a. The characteT' specified by literal-1, literal-3 is compared
ta successive characteT's, starting with th• leftmost
character position in the data item referenced bv
identifier-1. Literal-1, literal-3 and that portion of the
contents of the data item referenced by identifier-1 match
if, and onlg if, they are eq_ual.

PAOE 171

b. If no match occu1's in the compa,-ison of lite,-al-1,
lite,-al-3, the compa,-ison is ,-epeated starting with the
next cha1'acter position of identifie,--1.

c. Whenever a match occu,-s, tallying and/or ,-eplacing takes
place as desc1'ibed in general rules 8 through 10. The
character position in the data item referenced by
identifier-1 immediately to the right of the characte,
position that caused the match is now conside1'ed to be the
leftmost character position of the data item refe,-enced bv
identifier-1, and the comparison cycle starts again with
literal-1, literal-3.

d. The comparison ope1'at~on continues until the rightmost
ch~racte,- position of the data item referenced by
identifier-1 has participated in a match or has been
considered as the leftmost characte,-.position. When this
occurs, inspection is te,-minated.

e. If the CHARACTERS phrase is specified, an implied
one-cha•acter operand p~,-ticipates i~ the cvcle desc•ibed
in pa,-agTaphs 5a thT'ough 5d a.bove, eacttpt" that no
compa,-ison to the contents of the .d.ata item T'efe,-enced bv
identifie,--1 talrtn. place. This imp.lied characte,- is
consideT'ed always to match the. leftmost cha1'acter of the
contents of the data item refe,-enced by identifier-1
participating in th.a current comparison cycle.

6. The comp.arison operation de,il'led in general t'ule 5 is affected
bV the BEFORE and AF~R phrases as follows:

a. If the BEFORE and AFTER phrase is not specified, literal-1,
litera.1-3 Ql' the implied o.pel'an~ qf t~e CHARACTERS phrase
participates in the comparison ope,-ation as described in
gene1"al rule 5.

PAGE 1'12

b. If the BEFORE phrase is specified, the associated
literal-1, literal-3 or the implied opeNtnd of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced bv identifier-! from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-!. The position of
this first occurrence is determined before the first cycle
of the comparison opel'ation described in general rule 5 is
begun. If, on any comparison cycle, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1, its
associated literal-1, literal-3, or 'the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated litel'al-1,
literal-3 or the implied operand of the CHARACTERS phrase
malJ participate only in those comparison CIJCles which
involve that po'l"tion of the contents of '\fie data item
-referenced by identifier-1 from the character position
in1t1utdiatelv to the Tight of the Tightmost character
post tion of the fi'f"st occurr•nce of 1 i teral-2, 1 i tel'al-5,
within the contents of the data it••. refel"enced btJ
identifier-1 and the Tightmost cha-racteT •o~ition of the
data item referenced by identifier-1. The position of this
first occurrence is deteT111ined before the fil'st cycle of
the compaTison operation descl'ibed in general l'ule 5 is
begun. If, on an, comparison cvcle, literal-1, literal-3,
OT the implied operand of the CHARACTERS ph1"'ase is not
eligible to pa1"ticipate, it is 'cottsidered not to match the
contents of the data item Teference>d blJ identi fier-1. If
there is no occurl"ence of 1 i tel'al-2, 1 i't"eTal-5 with in the
contwnts of the data ·1t1tm referenced blJ tdentifier-1, its
associated liteT"al-1, liteT'al-3, or the implied operand of
the CHARACTERS phTase is neve1"' eligible to pa1"ticipat• in
the compa1"'ison operation.

FoT'mat 1

7. The contents bfithe data item TefeT'enced btJ identifier-2 is
not initialized bV the execution of the INSPECT statement.

PAOE 173

S. The rules for talluing are as follows:

a. If the ALL phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one <1>
for each occurrence of literal-1 matche~ within the
contents of the data item referenced bv identifier-1.

b. If the LE;:ADING phrase is specified, the contents of the
data item refel'enced by identifjer-2 is incremented by one
< 1 > fol' each contiguous occurrence .. of li teral-1 matched
within the contents of the 4ata item referenced by
identifieT"-1, p~.ovided that the 1.eftmost such occul'rence is
at the point where comparison beg•n in the first coinparison
cucle in which 1.iteral-1 111c1.s eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the
data item referenced bv identifier-2 is incremented bu one
< 1 > for .each cha1'acter matched, in the sense of gene1"al
rule 5e~ within ihe contents of the data item referenced by
identifier-1.

For~t 2

9. The r,ul4tJJ for replace,.ent are as fol!lows:

a. When the CHARAC,TERS phrase is .specified,1 ead1 characteT'
matched, .in the senfie of gen,et>al rule .5e, in th;.e contents
of th.a data item referenced by identifiet>-1 is replaced bu
l i tel'a.1-4.

b. When ALL is specifie;CI, ea~h oc.cut>rence of literal-3 •atched
in the contents of the da.ta itein refe,...enced by identifiel'-1
is t>eplaced bt.1 literal-4. ·

c. When t...EADII\IQ is spec,ified,, each. contiguous,, .occuT'rence of
1 i t;erel-3 . m•tchttd . in the. contents of the dat• item
-referenc•d btJ identi:i'i.er-.t is t>eplaced bv lite,-a1...;.4,

.p,-oV,,~d•d that the l.eftm1tst occu,-,-ence is at the point wheT'e
C0fl'P41'ison began in the fi1"5~ compar.ison cvcle in which
literal-3 was eligible to pal'ticipate.

d. When FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item
refe,-enced by identifier-1 is replaced by lite,-al-4.

PAK. 1?4.

Format 3

10. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-1 had been written with one statem•nt being a
Format 1 statement with TALLYINQ phrases identical to those
specified in the Format 3 statement, and the other statement
being a Format 2 statement with REPLACINQ pllras•• identical to
those specified in the Format 3 statement. The general rules
given for matching and counting apply to the Format 1
statement and the general rules given for matching and
replacing apply to the Format 2 statement.

PAOE 17:5 ,

INSPECT Examples:

INSPECT word TALLYINO count FOR LEADINO "L" ",BEFORE INITIAL "A",

Where word-LAROE, count•1.
Whepe W01"d-ANAL YST, C ouftt-0.

INSPECT IIIO'rd TALLYINQ count FOR LEADINQ 111'11 BEFORE·INITIAL "L".

Where word•LAROE, count.a.
WhePe word•ANALYST, count•1.

INSPECT word TALLYING count FOR ALL "L", REPLACINO LEADINQ "A" BY
HEH AFTER INITIAL "L II.

Where word=CALLAR, count=2, word=CALLER.
Where word=SALAHI, count=1, word=SALEHI.
Where word-LATTER, count=!, wo1"d=LETTER.

INSPECT word REPLACINQ ALL 11A11 BY "0" BEFORE INITIAL "X 11 •

WhePe word=ARX1'X, word=ORXAX.
Where word•HANDAX, wopd=HQNDQX.

INSPECT word TALLYINO count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A 11 BY "8 11 •

Where word=ADJECTIYE, c ount•6, wo'l'd•BDJECTIYE.
Where word-JACK, count=3, wo'l'd=JBCK.
Where word=.JUJHAB, count•9, word•.JUJNBB.

INSPECT word REPLACING ALL "W" BY "0" AFTER
INITIAL "R".

Where word-RXXBOWV, W01"d-RXXBGOY.
Whe'l'e wo'i"d•YZACDWBR, worCl•VZACDWBR.
Where wo-rd=RAWRXEB, word•RAORXEB.

INSPECT word REPLACINQ CHMACTERS BY "B" BEFORE INITIAL "A".

word befo-re: 12 XZABCD
word afte-r: BBBBBABCD

PAOE 17IJJ

The MOVE Statement

The MOVE statement transfers data, in accordance with the rules of
editing, to one or more data areas.

FORMAT 1

MOVE <identifier-1> TO identifier-2 C, identifier-3J ...

<literal >

FORMAT 2

MOVE <CORRESPONDING} identifier-1 TO identifier-2
-~~- -------------

<CORR >

Identifier--1 a,nd literal-1 represent the ••nding al'ea;
ide.ntifier-2, identifier-3, ... , 1'ep1'esent the 1'eceivint area(s>.

An index data item cannot appear as an operand of a MOVE
statement.

The data designated by literal-1 or identifier-1 is moved first to
identifier-2, then to ichtntif ier-3, The rules 1'1tf1t1'1'ing to
id•tttifie,--2 a.lso apply. to the othe-r 1'eceiv·ing a,-·eas!' Arav
subsc,-ipting or indexing associated with titftntiltie,.:-.2, • ;d .·, is
evaluated immediately before the data is moved to the respective
data item.

Any subscripting or indexing associated ldith icfentifier-1 is
evaluated only once, immediately befol'e data is moved· to the first
of the 'l'eceiving ope.rands. The 'rfHtJlt of the statement

MOVE a (b >· TO b, c (b >

is equivalent to:

MOVE a (b) TO temp
MOVE temp to b
MOVE t&mp TO c (b >.

PAOE 177

Anv NOYE in which the sending and receiving items are both
elementarv items is an elementarv move. Everv elementarv item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE clause. NutaeT'ic liteT"als
belong to the categoT"V numeT"ic, and nonnumeric literals belong to
the category alphanutaeric. The figurative con'ltant ZERO belongs to
the category numeT'ic. The figurative constant SPACE belongs to the
categoT"y alphabetic. All otheT" figul'ative constants belon,g to the
category alphanumeT'ic.

The following rules apply to an elementa,-y move between these
categol'i es:

1. The figul'ative constant SPACE, a numaT"ic
alphanumeric edited, or alphabetic data item mu.st
moved to a numeric OT' numeric edited data item.

ad i ted,
not be

2. A numeric literal, the figuT'ative constant ZERO, • numel'ic
data item or a numeric edited data item mus.t ·not be moved
to an alphabetic data item.

3. A .-aon int•ger numeri.c. literaJ..·OP· a non intege1" numeT"ic data
i tam must J10:t. -• mpved to an a1,11anueeric OP alphanum}tric
edited data item.

4. All other elementa,-v moves a,-e legal and aT"e peT"foPmed
acco1'ding to the l'ules given below.

,\ny necessarv
1'epl'esttnta.t i an
mpv-s, .ial.an9,
•:i.t.em:.

con;yaTsion
t0,.1anottle1"
JaJi •h~ a,,111

of data .,fTom on• f OT'•m ol t.nte.-rnal
tales p la;ce ..Su,- j"n1 legal •J.:eunta'rV

editina ,spa.c ified for the Te.ceivi.nt .1data

1. When an alphanumeric edited oT" alphanume'l"ic item is a
..-ec.ajving, i tam, •ll.e•nment and anv n•ces•a-rv,. spac.-fi·U. ing
,t.ak•es,..p la,ce .as defin•d' u,11dtt::ri Btandal'll Al·i1.••nt Rule•~ lf
th.e si z.e of ttl• ••nd:J.J'lt, rtitem ls •1"ttet.ff tha11, >tile• st::a• of
the Teceiving item. the excess charactersa't"e t'rl,Jncated on
the -right after the· receivit'II , Ltp t~v:•filled. If the
sending item is desc,-ibed as being signed numeric, the
operational sign will not be moved, if th• ope1tatioJ1alc 11i1n
occupies a separate chaT"acte-r position (see the SION
clause>, that character' will .. no",)'e •t:rve.ff a.nd the size of
the sending item will be considerell to,; be vn•, less than its
actual size < in te'l'ms of standa-rd i:fata,>:#OrJlhlt chaT"acters).

PACE 178

2. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero-filling takes place as defined under the Standard
Alignment Rules except where zeroes are replaced because of
editing re~uirements.

When a signed item is the receiving item, the sign of the
sending item is placed in the receiving item. <See the SIQN
clause). Conve'rsion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a
positive sign is generated fol' the 'receiving item.

When an unsigned numeric item is the receiving item, the
absolute value ~f the sending item is moved and no
operation•l sign is generated fol' the receiving item.

When a data item described as alphanumeric is t.he sending
item, data is moved as if the sending item were described
as an un•igned numeric integer.

3. When a receiving field is desc'ribed as alphabetic,
Justification and anv .necei.sarv space-filling takes place
as defined und:er the ijtandard Ali9:nment Rules. If the size
of the sending item i;t· greatel' than the ~i ze of the
rece•ivb1g, it.,., .the excess c;haracters are trunc•te.a on the
right after the receiving item is filled.

Any move that is not an elementarv move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move, except
that there is no conversion of data f'rom one form of internal
representation to another. In such a move, the receiving area will
be filled without consideration for the individual elementar~ or
group items contained within either the sending or racaiving area,
except as noted in the OCCURS clause.

When a sending and receiving item share a part of their storage
areas, the result of the execution of such a statement is
undefined.

PAOE 171

The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, data items in
identifier-1 are moved to corresponding data items in identifier-2
according to the follou,ing rules:

A data item in identifier-1 and a data item in identifier-2
are not designated bv the kev word FILLER and have the sa,ne
c:iualifiers up to, but not including, identifier-1 and
identi.Pier-2.

At least one of the data items is an elementar,v data item.

The des~ription of identifier-1 and identifier-2 must not
contain level-nu,nber 66, 77, or 88 or the USAGE IS INDEX
clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAQE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, 01' USAOE lS INDEX C Iause. 'Howeve-r, identif itn•-1 and
i den ti f'ier-2 fflilld have REDEFINES or OCCURS ,clauses or be
subordinate to data items with REDEFINES OT" OCCURS clauses .

. ,,

PAQE 1SO'

Data in the following chart summarizes the legalitv of the various
tvpes of HOVE statements.

CATEGORY OF RECEIVING DATA ITEM
:---

CATEGORY OF
SENDING

DATA ITEM

IALPHANUMERICINUHERIC INTEGER
EDITED !NUMERIC NON-INTEGER

IALPHABETICIALPHANUMERICINUMERIC EDITED
==•===================J==========I====•======= ====•==•===========
ALPHABETIC YES YES NO
----------------------:----------:------------ -------------------
ALPHANUMERIC YES YES YES
---------.-------------: ----------: -----~------ -------------------.
ALPHANUMERIC EDITED • YES YES NO

----------:------------.-------------------,
NO YES YES I INTEGER

INUHERIC 1------------
INON-INTEGER ----------1------------:-------------------1 NO NO YES

:---------------------- ----------1------------:-------------------1
INUHERIC EDITED NO

MOVE Examples

HOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM

YES

HOVE 11 MARMACK INDUSTRIES" TO TITLE-HEADER.

HOVE PERSON IN FILE-RECORD TO
PERSON OF ALABAMA <I-A OF ALABAMA>,
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM~ED

HOVE TABLE-ELT <N, 1, M> TO NEXT-ENTRY
PREVIOUS-ENTRY

MOVE -36.7 TO DEFICIT.

MOVE GUOTES TO SECTION-DIVIDER.

MOVE ZERO TO COUN-TER

HOVE ZEROES TO COUN-TER.

PAQE UU

NO

.•

The NULTIPLY Statement

The NULTIPLY statement causes numeric data items to be multiplied
and stores the result.

FORNAT 1

NULTIPLY {identifier-1>

{literal-1 >

BY identifier-2 [ROUNDED]

[;ON SIZE ERROR imperative-statement] ---- -------
FORNAT 2

NULTIPLY {identifier-I> BY {identifier-2>

{literal-1 } {literal-2 >
QIVINQ identifier-3 CROUNDEDl

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-I or literal-1 is
bv the value of identifier-2. The value of the
<identifier-2> is replaced bv this product.

In Format 2, the value of identifier-1 01' lite,-al-1 is
bv identifier-2 or liteTal-2 and the result is
identifier-3.

multiplied
multiplier

multiplied
sto1'ed in

Each. identifier must
that in Fo1'mat 2
refeT to either an
numeric edited item.

refer to a numeric elementarv item, except
the identifier following the word QIVINQ must
elementarv numeric item or an elementarv

Each literal must be a numeric literal.

PAOE 182

The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED phrase.

1,, a,ter decimal point alignment, the number of places in the
,raction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is re,uested, the
absolute value of the resultant-identifier is increased by one
<1> whenever -the most significant digit of the excess is greater
than or e~ual to five (5).

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error con4ition
exists. If the ROUNDED phrase is specified, rounding tfllces place
before checking for site error.

If the resultant-identifier has CONPUTATIONAL-3
is detected only for data items declared
picture clause. Therefore all COMP-3 data items
with an odd number of character positions.

usage, size error
with an odd length
should be declared

1, the SIZE ERROR phrase
condition exists, the
undefined.

is not
value of

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is execut.ed.

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVINO INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE OTO ECONOMY-RATING.

PAGE 183

The OPEN Statement <Se~uential I-O>

The OPEN statement initiates the processing of se~uential files.

FORMAT

OPEN <<INPUT {file-name-1 CWITH NO REWINDJ > ... } ...

<OUTPUT {file-name-2 CWITH NO REWINDJ } ...)

<I-0 {file-name-3 >... > ...

<EXTEND <file-name-4 }. . .) ... } ...

The successful execution of an OPEN statement determines the
availabilitv of the file and results in the file being in an open
mode.

The suc;cessful execution Qf an OPEN statement makes the associated
record area available to the program.

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that referenc•• that file,
either explicitlv or implicitly.

An OPEN statement must be successfully executed pTior to the
execution of anv of the permissible input-output statements. In
the Permissible Statements Table below, 'X' at an intersection
indicates that the specified statement, used in the se~uential
access mode, may be used with the se~uential file organization and
open mode given at the top of the column.

PAQE 184

Open Mode
:---------------------------------------

!Statement 'Input Output I Input-Output I Extend
:-~---------- ------ --------1--------------:--~-~---
IREAD X X
:------------ ------ --------:-------------~:--------
lWRITE X X

1------------ ------ --------:--------------:--------:
IREWRITE X

Permissible Statements Table

A file may be opened with the INPUT, OUTPUT, EXTEND, and I-O
phrases in the same program. Following the initial execution of an
OPEN statement for a file, each subse~uent OPEN statement
execution for that same file must be preceded by the execution of
a CLOSE statement, without the LOCK phrase, for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

The file description
file-name-4 must be
created.

entry for
e~uivalent

file-name-1, file-name-3 or
to that used when this file was

The execution of an OPEN statement
specified FILE STATUS data item,
file-name-1 ... to be updated.

The INPUT Phrase

causes the
if any,

value of
associated

the
with

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to.the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed READ
statement for the file will result in an AT END condition.

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

PAQE 185

The EXTEND Pb?ase

When the EXTEND phrase
the file immediatelv
file. Subsequent WRITE
retOTdS to the file
OUTPUT phrase.

is specified, the OPEN statement positions
following the last logical recoTd of that

statements referencing the file will add
as though tile file has been opened with the

The EXTEND phrase and NO REWIND phTase can be used onlv foT
sequential files. The EXTEND phrase must not be specified foT a
file whose device-type is INPUT.

When the EXTEND phTase is specified and the LABEL RECORDS clause
indicates label recoTds are present, the execution of the OPEN
statement includes the following:

The beginning file labels are processed onlg in the case of a
single reel/unit file.

Processing then proceeds as though the file has been opened
with the OUTPUT phrase.

The 1-0 Phrase

The I-0 phrase permits the opening of a mass
input and output operations. Since this
existence of the file, it cannot be used if
is being initially created.

storage file for both
phrase i~-li•s the

the mass storage file

The 1-0 phrase can be used only foT mass storage file, (files
assigned to the RANDON device-type).

When the I-0 phrase is specified and the LABEL RECORDS clause
inditates that label records are present, the ek•cution of the
OPEN includes the following:

The labels are checked.

New labels are written.

The OPEN statement sets the current record pointer to the first
record currently existing in the file. If no records •••ist in the
file, the current record pointer is set such that the next
executed READ statement for that file will result in an AT END
condition.

PAQE 186

The NO REWIND Phrase

The NO REWIND phrases can onlu be used with sequential single
reel/unit files. Both phrases will be ignored if theu do not apply
to the storage media on which the file resides.

If the storage medium for the file permits rewinding, the
following rule applies:

When neither the EXTEND nor the NO REWIND phrase is specified,
execution of the OPEN statement causes the file to be
positioned at its beginning.

When the NO REWIND phrase is specified,
statement does not cause the file to be
must be •lread~ positioned at its
execution of the OPEN statement.

PME 187

execution of the OPEN
repositioned1 the file
beginning prior to the

The OPEN Statement <Relative and Indexed 1-0>

The OPEN statement initiates the processing of mass storage files.

FORNAT

OPEN {{INPUT {file-name-1 } ... } .. .

{OUTPUT {file-name-2 > ... } .. .

<I-0 <file-name-3 > ... } ... > ...

The successful execution of an O~EN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of the OPEN statement
associated record area available to the ,rogram.

makes the

The files T"eferenced in the OPEN statement .need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references th~t file,
either explicitly or implicitly.

A file may be opened with the INPUT, OUTPUT, and I-0 phrases in
the same program. Following the initial execution of an OPEN
statement for a file, each subse~uent OPEN statement execution for
that saae file must be prec.eded bg the execution of a·: CLOSE
statement, without the LOCK phrase, for that file.

Execution of t.he OPEN statement does. not obtain or release the
first data record.

If label records are specified for the file, the beginning labels
are processed as follows:

When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with
the System conventions for input label checking.

When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with
the System conventions for output label writing.

PAOE 188

The behavior of the OPEN statement when label records are
specified but not present, or when label records are not
specified but are present, is undefined.

The file description entry for file-name-1 or file-name-3 must be
e~uivalent to that used when this file was created.

The execution of the OPEN statement
specified FILE STATUS data item,
file-name-1 ... to be updated.

causes the
if any,

value of
associated

the
with

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below, 'X' at an intersection
indicates that the specified statement, used in the access mode
given for that row, may be used with the open mode given at the
top of the column.

PAQE 1891

---Open Mode
-------------------------:

IFile Access
Mode Statement Input:Outputllnput-Dutputf

:-----~----- ----------- -----1------:---------~--1
ISe~uential READ X I X
I ----------- -----1------1---~--~-----I

WRITE X

-----------1-----1------1-----------1 REWRITE X

-----------1-----1------1------------1
START X X

--~-------- t --.... --1------·I ----------- I
DELETE I X

1-----------1-~-----~---1-----1------1----------~-1
IRandom
I

READ

WRITE

X X
-----1 ------ : ------------- ,.

X X

----------- ----- ------:------------:
REWRITE X

----------- ----- ------1----------~-1
START

----------- ----- ------:------------
I DELETE X

1-----------1-----------1-----1---~--1------------
IDvnamic
I
I
I
I
I
I
I
I

I READ X X

1-----------1-----:-----1------------
I WRITE X X
1-----------1-----1------:-----~------
I REWRITE X

1-----------:-----1------1------------I START X X

1--~--------1-----1------1------------1
I DELETE X

------~-------~------------------------------------
Permissible Statements Table

The INPUT Phrase

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the ,irst record currentlv
existing within the file. If no records exist ln th• file, the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

Th• OUTPUT Phrase

Upon successful •xecution of an OPEN statem•nt with the OUTPUT
phrase specified1 • file is created. At that time the associated
file contains no data records.

The I-0 Phrase

For files being opened with the I-0 phrase, the OPEN· statement
sets the current record pointer to the first record current!~
existing within the file. If Jl'O records exist in the file, the
c~rrent r•cord pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

The PERFORN Statement

The PERFORN statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

FORNAT 1

PERFORN procedure-name-1 C{THROUQH} procedure-name...,;2l

<THRU >

FORNAT 2

PERFORN procedure-name-1 C{THROUQH) procedure-name-2J

<THRU >

{identifier-!) TINES

FORMAT 3

PERFORN procedu,-e-name-1 C<THROUQH} prc:,cedur.e-name-2]

<THRU >

UNTIL condition-!

•

FORl'IAT 4

PERFORM procedure-name-1 [{THROUGH> procedure-name-2J

<THRU >

VARYINQ {identifier-2} FROM {identifier-3}

<index-name-1} <index-name-2>
{liteT'al-1 >

BY <identifieT'-4} UNTIL condition-1

[AFTER {identifier-5> FROM {identifier-6>

<index-nt1me-3} {index-name-4>
<literal-3 >

BY <identifieT'-7) UNTIL condition-2

[AFTER {identifier-8> FROM {identifier-9> -----
<index-name-5> <index-name-6>

{liter•l-5 >

BY <identifier-to> UNTIL condition-3Jl ___ ..__

<literal-6 >

Format 1 is the bt1sic PERFORM statement. A pT'oceduT'e referenced bt
this type of PERFDRN statement is executed ·once and tlten control
passes to the next executable statement following the PERFORM
statement.

.
Formt1t 2 is the PERFORM ... TINES. The procedures are performed the
number of times specified by integer OT' by 'the initial valt:ie of
ffie data item referenced by identifier-1: fo1" that execution. If,
at the time of execution of a PERFORM statement, the value of· the
dt1ta item referenced by identifier-I is equal to zero or is
negative, control passes to the next ere~utable statement
following the PERFORM statement. Following the execution of the
pTocedures the specified numbeT of times, contTol i's t1'ansf·e1'red
to the next executable statement following the PERFORM statement.

PAOE 193

During execution of
identifier-1 cannot alter
to be executed from that
of identifier-1.

the PERFORM statement, references to
the number of times the procedures are
which was indicated by the initial value

Format 3 is the PERFORM ... UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is transferred to the
next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is entered, no
transfer to procedure-name-1 takes place, and control is passed to
the next executable statement following the PERFORM statement.

Format 4 is the PERFORM ... VARYINQ .. This variation of the PERFORM
statement is used to augment the values referenced bv one or more
identifiers or index-names in an orderly fashion during the
execution of a PERFORM statement. In the following discussion,
every reference to identifier as the obJect of the VARYINQ, AFTER
and FROM (current value> phrases also refers to index-names. When
index-name appears in a VARYINQ and/or AFTER phrase, it is
ini•ialized and subse,uently augmented (as described below>
according to the rules of the SET statement.: When index-na411e
t11ppeaT's in the FRON phrase, identifier, when it appeal"s in .an
associated VARYINQ 01" AFTER phT'ase, is in.lt.iali zed according to
the rules of the SET statement; subse,uent augmentation is as
descT'ibed below.

In FoT'mat 4, when one identifier is va1'ied, id.entifiet'-2 is set to
the value of litet'al-1 or the cu1'1'ent value of identifie1'-3 a.t the
point of initial execution of the PERFORM statement; then, if the
condition of the UNTIL ph1'as• is fals.e,. ,11e seq_uence of
p1'ocedures, p1"ocedu1'e-n•me-1 th1'ough p1'ocedu1'e-naae-2, is executed
once. The value of identi f ie1'-2 i.s au9aent•d bV the specified
increment OT' dec1'ement value (the value of identifie1'-4 01'
lite<ra.1-2> and condition-1 is evaluated again. The cvcle continues
until this condition i~ ,.~ue; a:t which ,,oint,. cont1'ol is
tl'a11sfe,-,.ed to t.11.e next executable •t•teaen, '!1ell•tn1, the PEltFORM
st•tement ... If .condition-1, is ,tTue at the beg tnnint of -,xecution of
the PERFORM statement, control is tt"ansfe1'1'ed to the next
•.xecutable statement following the PERFORM statement.

Eacb identifi,e1' -r:epT'•esents a numeTic •l•mentat"IJ item desc1'ibe .. d in
the Data Division. l,n Format 2, ident.ifie.'f'c-1 must be describ•d as
a numeric integer.

Each literal r•p•esents a n~meT'ic literal.

The wo1'ds THRU and THROUOH are eq_uivalent.

Pt\QE 19'4

If an index-name is specified in the YARYINQ or AFTER phrase,
then:

The identifier in the associated FROM and BY phrases must be
an integer data item.

The literal in the associated FROM phrase must be a positive
integer.

The literal in the associated BY phrase must be a non zero
integer.

If an index-name is specified in the FROM phrase, then:

The identifier in the associated VARVINQ or AFTER phrase must
be an integer data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase muit be an integer.

Literal in the BY phrase must not be zeroi

Condition-1, condition-2, condition-3 mav be anv conditional
expression.

When pT'ocedu-re-name-1 .ar1d procedure-name-2 at'e b.oth spec·ified and
eitheT' is the flcame of a proc•du,-e in the decl·aT'ative section of
the progt'am then both must be pT'ocedure-names iD th• sam•
declaT'ative section.

The data items refet'enced bv identifier-4, identifier-7, and
identifier-1O must not have a zet'o value.

If an index-name is specifi•d in the VARYINQ o1' AFTER phT'ase, and
an identifiel' is specified in the assoc.iated FROM ph,-ase, then the
data item referenced bv the identifiel' must have a positive val~•.

When the PERFORM stat•ment is executed, control is tPansfeT'Ped to
the fiPst statement of the p?ocedure named p1'oceduPe-name-1. This
transfer of control occut's onlv once fol' each execution of a
PERFORM statement. For those cases when a transfel' of cont?ol to
the named p1'ocedure does take place, an implicit transfe1' of
control to the next executable statement following the PERFORM
statement is established as follows:

PAQE 190

Jf proc•dure-name-1 is a paragraph-name and procedure-naae-2
is not speci,ied, then the return is a,ter the last stateaent
o, procedure-name-1.

If procedure-name-1 is a section-name and procedure-naae-2 is
not sp•ci,ied, then the return is after the last statement of
the last paragraph in procedure-name-1.

If procedure-name-2 is speci,ied and it is a paragraph-name,
then the return is after the last statement of the paragraph.

If procedure-name-2 is specified and it is a section-name,
then the return is after the last stateaent of the last
paragraph in the section.

There is no necessarv relationship between procedure-naae-1 and
pro·cedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at the procedure naaed
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, QO TO and PERFORM
stateaents ••Iii occur between procedure-name-! and the end of
p'rocedure-naae-2. If there are two or more logical paths to the
return point, then p1"ocedure-l\ame•2 matJ be the name of ap.t1'ag1'aph
consisting of the EXIT statement, to which all of these paths aust
lead. ·

If control passes to these procedures btJ means other th~n a
PERFORM statement, control will pa•s through the last statement of
th• p1'ocedure to the nert executable stateaent as if no PERFORM
statement mentioned these procedures.

PAOE 196

ENTRANCE
I
V

ISet identi,ier-2 e~ual tol
current FROM value

V
/-----------\ True

----------------------> I Condition-1 :----------~--> Exit \-----------/
V False

I Execute procedure-na•~~ll
I THRU procedure-name-2 I

--------------------~-----
I
V

1----------------IAugmttnt identifie:r-2 with I
I CU1'T'ent .BY va.lue I

Flowchart for the VARYING Phrase of a PERFORM Statement Having One
Condition.

•

In Format 4, when two identifieTs are vaTied, identifier-2 and
identifier-5 are set to the current value of identifier-3 and
identifier-6, respectively.

After the identifieTs have been set, condition-1 is evaluated; if
true, control is transferred to the next executable statement; if
false, condition-2 is evaluated. If condition-2 is false,
procedure-name-1 through procedUTe-name-2 is executed once, then
identifer-5 is augmented by identifieT-7 or literal-4 and
condi.tion-2 is evaluated again. This cycle of evaluation and
augmentation continues until this condition is 'liTue. When
condition-2 is true, identifier-5 is set to the value of liteTal-3
or the cuTrent value of identifier-6, identifier-2 is augmented btJ
identifieT-4 and condition-1 is re-evaluated. The PERFORM
statement is completed if condition-1 is tl'utt; if not, the CtJCles
continue until cond·:lt'ion-1 is t-rue.

DuTing the execution o# the proceduTes associated with the PERFORM
statement, anv change to the VARYINQ variable (identifier-2 and
index-name-1>, the BY vaTiable (identifieT-4>, the AFTER vat'iable
< identifier-5 and index-nam.e-3), or the FROM vaTiable
<identifier-3 and index-name-2> will lie taken into consideration
and will affect the oper4ii1:ion o~ the PERFORM statement.

PAOE 198

ENTRANCE

V

lSet identifier-2 and identifier-51
I to current FROM values
-------------------------~---------

V

/-----------\ True ------------->I Condition-1 1----------------> Exit
,-------------/

V False
/-------------\ True ----------->I Condition-2 1----------------\-------------/

I I
I V False V

• I-------------------~------ -------------------------
1 !Execute procedure-name-11 ISet identifier-5 to itsl
I tTHRU procedure-name-2 I I current FROM value
I-------------------------- -----~--~--~-------------

V V

--:Augment identifier-5 with I
I current BY value ____ , _______ .,. ___________________ _

----~----------~~---~-~-----
&Augment identifier-2 withl

current BY value l

-~--------...-----------.... ------------------,------------

Flowchart for the VARYING Phrase of a PERFORM Statement Havin1 Two
Conditions.

ENTRANCE
I
V

Set
I identifier-2, identif ier-5, I
: identifier-a
I ta current FRON values

I
V

/----------\ True ------------->I Conditan-1 :-----------------> Exit ,---------/
I False
V

/-----------\ True ---------->I Condition-2 1---------~--------------------
\------------/

I False
V

/---------\ True -------->I Condition-3 :-----------
1 I \-----------/ I
I I I False I

I t I V V

I I : -~------------------- ---------.-------

J I
I I
I I

I
I I

I I ~t

l Execute I S.,t;
lproceclure-name-1 I U.d.entifie·r-8
ITHRU procedure- I Ito its currentl
I na,u-2 J I FRON valu• I

I I
V ,t.,J

___ ..._--~------------- ------------------... ..,_-

I
I
I

' V

--~--~--.-------
I Set
lidentifier-5
Ito its currentl
I FRON value l

I
V

f I
I J I
I I
I I

l Augment I I Augment I Aug•ent I
lident;ifier-8 withl lidentifie'l"-5 withl I identifier-2 witltl
I current BY valuel 1 current BY valuel I current BY value I

I
I

-----~~------------ ---~--------------- ---------~-----~-~---

Flowchart for the VARYING Phrase of a PERFORM Stateaent Having
Three Conditions.

PAOE 200

At the termination of the PERFORM statement identifier-5 contains
the current value of identifier-6. Identifier-2 has a value that
exceeds the last setting by an increment or decrement value,
unless condition-1 was true when the PERFORM statement was
entered, in which case identifier-2 contains the current value of
id ent if i er-3.

When two identifiers are varied, identifier-5 goes through a
compl•te cycle <FROM, BY, UNTIL> each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifier-a goes through a complete cvcle
each time that identifier-5 is augmented bv identifier-7 or
literal-4, which in turn goes through a complete cvcle each time
identifier-2 is varied.

After the completion of a Format 4 PERFORM statement, identifier-5
and identifier-a contain the current value of identifier-6 and
identifier-9 respectivelv. Identifier-2 has a value that exceeds
its last used setting bv one increment or decrement value, unl1tss
condltion-1 is true when the PERFORM statement is 1tntered, in
which case identifieT'-2 contains the CUT'rent value of
identifieT'-3.

If a sequence of statements refeT'red to by a PERFORM statement
includes anotheT' PERFORM statement, the sequence of procedures
associated with the included PIERFORM aust i tsel,f ei th111"' t,e total lg
included in, or totallv exclud•d from, the lotlcal ••ttuence
refert"ed to bV the fiT'st PERFC)fiM. Thus an active PERFORM
statement, whose execution point begins within tile vange of
another active PERFORM statement, must not allow contT'ol to pass
to the exit of the other active PERFOR" statements fu1"ther11ore,
two or more.such active PERFORM statements mav not h•v• a co• mon
exit. See the valid illustT'ations below.

x PERFORM a THRU m

a--------------~---------~~~-
'f ,' ct PERFORM f THRU J

h

,I
I

. -----------------------------
f ___ ..._ ______ ,..

J ---------

PAQE ~1.

x PERFORM a THRU ID

a---------------------------
d PERFORM f THRU J

f ----------
J ______ ._ __ _

ffl -------~-------------------

X PERFORM a THRU ID

•
f

ID -----~~-,~-------------~--
J------------

d PERFORM f THRU J

A PERFORM
independent
declarative
onlV one·· of

statement that apptars in a section th•t is not in an
segm• nt can have within its range, in addit'ion ta anv
sections whos•}•xecuti6ri is caused wit,in lhat range,

th• folUtwint: · ·

Sections and/or P•"Fag,"Faptas wholly contained hr one or more
non.,..ind1tpendent segments.

Sections and/or pa?at'raphs whollv
independent segment.

contained .. in a single

A PERFORM statement that appea'rs: iri an inditperHl•Jlt •••••n~' can
have within its range, in a~4ition to anv declarative ••ctions
whose eutcution is caused within that range, onlv one of' the
following:

Sections and/or paragraphs whollv contained in one or more
non-independent segments.

Sections and/01" pat'agraphs whollv contained in the same
independent segment as the PERFORM statement.

PAQE ~··

The READ Statement <Se~uential I/0)

The READ statement makes available the next logical record from a
file.

FORMAT

READ file-name R£CORD CINTO identifier]

C1AT END imperative-statement]

The associated file must be open in the INPUT or I-0 mode at the
time this statement is executed.

The record to be made available by the READ statement is
determined as follows:

If the current record pointer was positioned tuJ the execution
of the OPEN statement, the record pointed to blJ the current
record pointer is •ade availaWle.

If the current rec~?d pointer was positioned blJ the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file •~d.
then that reco1"d is made availabltJ. ··

The execution of the READ statement causes the value of the FILE
STATUS data item, ·ti' any., associated with file-name to be updated.

When the logical records ol a file are described .. with more than
one ,-..eco1'd descri>ption the contents of an,t ct'ata 'itttms which lie
beyond ttt• range ofl the· "cv1>r·ent data re1co-r·1:t are LMdef iried at the
completion O·f t.he execution of the READ •tatement.

If, at the time of e1ecution of• READ statement, the position of
ttf• cu-rrent ~•co,-tf p'oi'1'ft'4tl' fo~ what f i'l'e is 11ndefined, the
exe~ution ctf tttet READ •tatement fs \insucc;ttssflul.

Following the unsuccessful execution ofl anlJ. READ statement, the
cont•nt• .of the associated'-recol'd are• and the position of the
cuPrent record pointer are undefined.

PAQE 203

The INTO Phrase

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified bv identifier according
to the rules specified for the NOVE statement. The implied NOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been re•:d and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
i dent 1 f i er.

The INTO phrase must not be used when the input file contains
logical Tecords of vaTious sizes as indicated bt thier record
descriptions. The s~orage area associated with identifier and the
record •rea associated with file-name must not be the same storage
a1"ea.

The AT END Phrase

If, at the time of the execution of a READ statement, no next
logical 1"ecord exists in the file, the AT END condition occurs,
and the execution of tile READ statement is conside1"ed
unsucc-essful.

When the AT END condition i~.,,..ecogni~ed the follo111in9 actions are
taken in the specified ot"der.

A value t.i• pl,ace.d into the FILE STATUS ,data it••· if speci:fied
fo,- this file1 to indicate an AT END condition.

' '

-.If the AT~ phrase is specifi•d in, thtf
concJ ~ti,qo.1 .co,nti,ol is tr•n•f:•.'l'retl
imperative-~~•t• .. •nt. f\nv USE pTocedure
file is not executed.

~~ "'> '.\,f'

st.-t1t11tttnt .c•usint the
to the Al'. END

•:P•cifie4 for .this

If the. AT END, phras• is .. not •ttKi,f,ied, 1dien a USE p,rocedure
must be sp~cified, •ither explicitlv or imJlticit.Jv., fo1' .. this
file and that procedu1"e is executed.

Wh•n ~he AT END condition has be.en recog-.izecf, a R.E~ statement
for that file must not be executed without fi,-st executing a
successful CLOSE statement follo111ed blJ the execution of a
successful OPEN statement for that file.

The AT END phrase must be specified if no applicable USE proceduTe
ts specifi•d for file-name.

PAO£ 204

The READ Statement <Relative and Indexed I-O>

The READ statement makes available a specified record from a mass
storage file.

FORMAT 1

READ file-name CNEXTl RECORD CWITH NO LOCKl [INTO identifier]

Cs AT END imperative-statement]

FORMAT 2

READ file-name RECORD CWITH NO LOCKJ [INTO identifierl

[;KEY IS data-nameJ

[;INVALID KEY imperative-statement]

Format 1 must b.e used for al 1 f i las in sequential access mode.

The NEXT phrase must be specified for files in dvnamic access
mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in
dynamic access mode when reco-rds are to be ret-rievef -randomly.

The INVALID KEY phrase 01" the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

The associated files must b.e open in the INPUT or I-0 mode at the
time this statement is executed.

The KEY phrase mav be specified only when the 01"gaJ1.ization of
file-n•me is index. When the KEY clause is p?esent, data-name. must
be the ·name of one of the reco-rd keys associated with fil~.:-name.
Dat•-name mav be qualified.

PAGE 205

The 'l"ecord to be made available by a Format 1 READ statement is
determined as follows:

The record, pointed to by the current record pointer, is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer. If the record is no longer accessible, which
may have been caused by the deletion of the record, the
current record pointer is updated to point to the next
existing 'l"ecoTd in the file and that record is then made
available.

If the current record pointer was positioned bv the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if anv, associated with file-name to be updated.

When the logical records of a file are described with more than
one record description, these records automatically share the same
storage area, this is ,quivalent to an implicit redefinition of
the a'l"ea. The contents of any data items w.hich lie beyond the
Tange of the current data record a'l"e undefined at the co•pletion
of the execution of the READ statement.

If, at the time of execution of a Format 1 READ statement, the
positio~ of cu:rTen\:record pointer for that file is undefined, the
execution of that ~EAD statement is unsuccessful.

The INTO Ph:rase

If the INTO phr•se is specified, the record being :read is moved
from the ••co:rd ar:ea to ~;be a:rea spe;,cified by identifie:r actco.?ding
to the -rules specifie,d fo• the HOVE statement. The impli, •. d NOV£
does not occur if the execution of the READ statement wi1H
unsuccessful. Anv subscripting or indexing associated with
idttntifie+ is evaluated after the reco,-4 has been read and

' f > ' ,,

immediately befo?e it is moved to the data item.

When th.• INTO ph-rase is used, the reco-rd being read is available
in both t,he input record a:rea and the data a-rea associated. with
iden.tifier.

The INTO phrase must not be used when the input file contains
logical :records of va:rious sizes as indicated by their :re~o:rd
descriptions. The sto:rage area associated with identifie:r and the
'l"eco'l'd a:rea associated with file-name must not be the same sto:rage
area.

PAOE 2Qi,

Following the unsuccess,ul execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

Fo-r -relative files if the RELATIVE KEY ph-rase is specified, the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative reco-rd
number of the -record made available.

Fo-r -reltBtive files the execution of a Format 2 READ statemu,t> sets
the current -record pointe-r to, and makes availtBble, the record
whose 'relative "record numbel' is contained in the data item named
in the RELATIVE KEY phrase fo-r the file. If the file does not
contain such a -record, the INVALID KEY condition exists and
execution of the READ statement is unsucces5ful.

For an
the same
kev of
thev are
execution
values.

indexed file being sequentially accessed, -records having
duplicate value in an alternate l'ecord key which is the
reference are made available in the same order in which

r.eleased bv execution of WRITE statements, or by
of REWRITE statement• which create •uch duplicate

For an indexed file if the KEY, phrase is specified in a .Format 2
READ statement, data-name is established as the kev of r.efeT'ence
fol' this ret-rieval. If the dvnamic access mode is specified, this
key of reference is also used for retrievals by any subse~uent
executions of For-.t 1 READ stat,ments for the, flile unti 1 a
different key of refe-rence is established for the file.

If the KEV phrase is not specified in a FoT'mat 2 READ statement,
the p-rime record kltv is established as the kev of t'efe-rence for
this retrieval.

If the dynamic access mqde is specified, this lceu of T'eflerence it
also used for retT'iev•l• bfJ any subsequent executions of FoT'mat l
READ statements foT' the file until a iliffe1'ent kev of refe-rence is
established for the file.

For indexed files the execution of a Format 2 READ stat•ment
causes the value of the k4u.1 of -reference to be comtHt'red with tlle
value contained in the cort'esponding data item of the stol"ed
records in the file, until the fit'st -reco-rd having an e•u•l value
is found. The current record pointer is positioned to this T"ecord
which is then made available. If no -record can be so identified,
the INVALID KEV condition exists and execution of the READ
statement is unsuccessful.

The AT END Phrase

If, at the time of the execution of a Format 1 READ statement, no
next logical record exists in the file, the AT END condition
occurs, and the execution of the READ •tatement is considered
unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the specified order~

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the
condition, control is transferred
imperative-statement. Anv USE procedure
file is not executed.

statement causing the
to the AT END

specified for this

If th• AT END phrase is not specifittd, then a USE procedure
must•• specifittd, •ither explicit!• or implicitlv, for this
file, and that procedure is executed.

When the
input-output
unsucc&ssful.

AT END
statement

condition
which

occurs, execution of
caused the condition

the
is

When the AT END condition has been r•cognized; a Fo?mat t READ
statement for that file must not be •xecbted without first
executing one of the following:

A successful CLOSE statement followed by the execution of a
successful OPEN st•tement for that file.

A successful START statement for that file.

A successful Fo,.mat 2 READ statement fo-r that file.

For a file for •hich dvnamic access mode is specified, a Format 1
READ statement •ith the NEXT pllraae specified causes the 'next
logical ..-eco'l"d to be ,.et-Pi eved from the file.

The REWRITE Statement <Sequential I/O)

The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name [.FROM identiferl

Record-name and identifier must not re.Per to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

The file associated with record-name must be a mass storage file
and must be open in the I-O mode at the time of execution of this
statement.

The last input-output •tatement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement.

The number of character positions in the record referenced by
record-name must be equal to the number of character positions in
the record being replaced.

The logical reco-rd rele.ased by successful execution of the REWRITE
statement is no longer available in the record area.

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated 111ith the file to be
updated.

PAQE 2&11

The FRON Phrase

The execution of a REWRITE statement with the FRON phrase is
equivalent to the execution of:

NOYE identifie-r TO reco-rd-name

fol lowed blJ .the execution of the same REWRITE statement tllithout
the FRON phrase. The contents of the reco-rd a-rea prior to the
execution of the implicit NOYE state,aent have no effect on the
execution of the REWRITE statement.

The REWRITE Stateaent <Relative and Indexed I-0>

The REWRITE statement logically replaces a record existing in a
mass stoTage file.

FORMAT

REWRITE record-name [FROM identifier]

t; INYALID KEY imperative-statement,l ---------
Record-name and identifi.eT' must not Tefer to the sa8'e storage
area.

Record-:n,me. is ·th• name ol a \ogic,~1 r.ecord in t~• File Section of
the ~ata iDivision and ma\f be q,ualified. · ·

FoT' T'elative files the INVALID KEY phT'ase must not be specified
fo-r a REWRITE stateautnt which refe-rences a file in sequ•ntial
access mod•. •

The INVALID ~V phN••• must be, sp•cified in the RE~ITE st4t•ment
for fil1t1s ih t'tre rartddm ·or dcjhainic access mode for which an
approp-riate USE pT'ocedure is not specified.

For indexed files -the INVALID KEY phrase must be· sp;~ittied fi, thtt
REWRITE stat•••nt for files for which an appT'opriat• USE pTocedure
is not specified.

The fil• associated with reco-rd-name must be open in the 1...:0• mode
at the tim• of execution of this ~tateaent.

FoT .fi,l.ett in : the seq,uenti;al access mode, t~e la~.~ input--011,tput
stat•aen't 'executed fo-r the ass:oc iated file prior to the . execution

. of the . RE~ITE sta.tement must ha._;e been • ~uccessftul lV ei-•cuted
READ stat'ement w'ith'out, the WITH ND LOCK phrase. .1 ,,

The number of charactel' positions in the Tecord refel'enced by
Tecord-name must be eq_ual to the number of characte-r positions in
the reco'rd being -replaced.

The logical reco-rd -released by a successful execution of the
REWRITE statement is no longer available in the Teco-rd area.

PAOE 211

The current record pointer is not affected bv the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if anv, associated with the file to be
updated.

The INVALID KEY Phrase

For a relative file accessed in either random or dynamic access
mode, the System logicallv l'epl•ces the record 5:pecified bv the
contents of the key data item associated with the· file. If the
file does not contain the recol'd specified by the key, the INVALID
KEY condition exists.

For indexed files the INVALID KEV condition exists 1a1hen:

The access mode is seq,uential •nd the value. cqn.,~in,e~t in the
prime record k'ev data item of the l'eco-rd to be ret,laced is not
equal to the value of the prime record read fT'om the field, or

The value contained in the prime t'e,c:;ord .k•v it••· does not
equal that of any record stored in the file.

Whe.n the INVALID KEV condition exists the upda.ting operation, does ·
not take place and the data H1 the re,cor.tf area ts• unaf;t:,ct,ed.

The FROM Phrase

The execution of a REWRITE statement with the FRON ph-rase is
equivalent to the execution of:

MOVE identifier TO T'ecord-name

fol lowed by the execution of the same REWRITE statem•n·~ without
th• FRON phT'ase. The contents of the T"ecord a1"ea pJ•ior to the
exticution of the implicit l'IOVE .statenutnt have no. efffect on the
execution of the REWRITE statement.

PAGE 212·

The SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names associated ~ith table elements.

FORMAT 1

SET {identifier-1> C,identifier-2J ... > TO {identifier-3}
<index-name-3}

<index-name-1} C,index-name-2J <integer-1 >

FORMAT 2

SET inde«~name-4 C,index-name-5J ... <UP BY > {identifier-4>

<DOWN BY> <integer-2 >

All references
apply equally to
respectively.

to index-name-1, identifier-1, and index-name-4
index-name-2, identifier-2, and index-name-5,

Identifier-1 and identifier-3 must name either index data items,
or el•mentarv items described as an integer.

Identifier-4 must be declar•d as an elementarv num•ric integer.

Integer-1 and intege.r-2 ••v be signed. lnteger-1 aust be positive.

Ind•x-names are consid•red related to a given tabl• and are
defined by being specified in the INDEXED BY clause.

If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence
number of an element in the associated table.

If index-name-4, index-name-5 is specified, the value of the index
both before and after the execution of the SET statement must
correspond to an occurrence number of an element in the associated
table. If index-name-1, index-namt-2 is spec if ied, the value of
th• index aft•r the ex•cution of th• SET statement must correspond
to an occurrence number of an element in the associated table. Th•
valu• of the index associated with an ind•x-nam• after the
execution of a PERFORM statement mav be undefined.

PAOE 213

In Foraat 1, the following action occurs:

Index-name-1 is set to a value causing it to refer to the
table element that corresponds in occurrence number to the
tat,le element referenced by index-name-3, identifier-3, or
integer-1. If identifier-3 is an index data item, or if
index-naae-3 is related to the same table as index-name-1, no
conversion takes place.

If identifier-1 is an index data item, it
either the contents of index-name-3 or
identifier-3 is also an index data item;
place in either case.

aav be .. set eciual to
identifier-3 where
no conversion takes

If identifier-1 is not an index data item, it aav be set onlv
to an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor integer-1 can be used
in this case.

The process is repeated for index-name-2, identifieT'-2, etc.,
if specified. Each time the value of index-name-3 or
identifier-3 is used as it was at the beginning of the
execution of the statement. Anv subscripting or indexing
associated with identifier-!, etc., is evaluated immediately
before the value of the respective data item is changed.

In Foraat 2, the contents of index-name-4 are incremented (UP BY>
or decremented (DOWN BY> bu a value that corresponds to the number
of occu,-renc•• -rep?e,sented btJ the value of intege,--2 or
identifier-4; the-reafte'r, tlle pl'ocess is repeated fo.,.
indei-name-5, etc. Each time the value of identifie'r-4 is used as
it,was at tile be:9inning of the execution of the statement.

Data in the followint ch.,..t -r•p,..•sents the validity of val"ious
ope,-and combinations in the SET statement.

I
I
:sending Item
I

I lntege'r Datal Index
Item Name

llnde1 Datal
I Item l

:-~----------------1~----~~~----:-~-~------1----~~----1
llnteger Li te'ral
llnteger Data Item l
llndex~•• t
IIndex Data Item I

No
No

Valid
No

Valid
t Valid

ValitJ
Valid*

No
I No
I Valid*
I Valid*

-~---~--
*No conve'rsion takes place

PAOE 214

The 8TMT Stat•••nt (Relative and Indexed I-O>

Th• START statement provides a basis for logical positioning
within a file, for subsequent sequential retrieval of records.

FORMAT

START file-name [KEY (IS EGUAL TO > data-name]

<IS• >
<IS OREATER THAN>

<IS> >
<IS NOT LESS THAN>

<IS NOT< >

[;INVALID KEY imperative-statement]

Note: The required relational characters '>', '<' and '=' are
not underlined to avoid confusion with other svmbols.

File-name eust be the name of a file t11itli sequential err d1,1namic
access.

Data-naee mav be qualified.

The INVALID KEY phrase Must be specified if no applicable USE
procedure is specified for file-name.

If file-name is the na•e of a relative file then data-name, if
specified, must be the data item specified in the RELATIVE KEV
phrase of the associated file control entrv.

If file-name is the n.,.e of an indexed file then data-name, if
specified, mav reference the data items specified as the record
kevs associated with file-name or it mav reference anv data item
of categorv alphanumeric whose leftmost character position
corresponds to the leftmost character position of a record kev
data item.

File-name must be open in the INPUT or I-0 mode at the time that
the START statement is executed.

If the KEV phrase is not specified the relational operator 'IS
EGUAL TO' is imp 1 i ed.

PAOE 215

The tgpe of comparison specified bv the relation•l ope1"8to? in the
KEY ph1"ase occurs between a kev associated with a record in the
file referenced by file-name and a data item.

If file-name references a relative file, the data item used in
the comparison is the relative kev as5oci•ted with file-name.

If file-name references an indexed flile, the data item used in
the compal'ison is either the prime reco1'd key associated witll
flile-name or, if the KEY phrase is specified, the data item
referenced in the KEY phl'ase. If the operands of the
comparison are of unequal size, comparison proceeds as though
the longer one we1"e t1"uncated on the 1"ight such that its
length is equal to that of the shorte1". All othe1" nonnumeric
comparison Tules apply except that the presence of the PROGRAM
COLLATING SEQUENCE clause will have no effect on the
comparison.

The current record pointel' is positioned to the first logical
record currently existing in the file whose kev satisfies the
comparison.

If t~e comparison is not satisfied bv any record in the file,
an INVALID KEV condition exists, the execution of the START
statement is unsuccessful, and the position of the current
reco1'd pointer is undefined.

The execution of the START statement causes the value of the FILE
STATUS data item, if anv, associated with file-name to be updated.

The STOP Statement

The STOP statement causes a permanent or temporary suspension of
the execution of the obJect program.

FORMAT

STOP <RUN >

<litel'al}

The lite,-al may be nume,-ic 01' nonnumel'ic or may be any figurative
constant.

If a STOP RUN statement appears
imperative statements ~ithin a
last statement in that sequence.

in a consecutive sequence of
sentence, it must appear as the

If the RUN phrase is used, then a STOP RUN message is logged and
the execution is te,-minated.

If STOP literal is specified, the literal is logged in a STOP
"literal-value" message and the execution is suspended.

STOP Examples:

STOP RUN.
STOP "END OF PROCEDURE".

PAGE 21.7

The SUBTRACT State,nent

The SUBTRACT state,nent is used to subtract one, or the su,n oft two
or ,nore, numeric data items ,rom a numeric data item and store the
result.

FORMAT 1

SUBTRACT {identifier-1> C, identifier-21

{literal-1 > C, literal-2 J

FRON identifier-m CROUNDEDl

C;ON SIZE ERROR imperative-statement]

FORMAT 2

SUBTRACT -Cidentifier-1> C, identifier-21

<literal-1 > C, lite-ral-2 J

FRON -CidentifieT-m> QIVINQ identifier-n CROUNDEDJ

-Cliteral-m >

[;ON SIZE ERROR imperative-statement]

FORMAT 3

SUBTRACT <CORRESPONDING> identiftier-1

<CORR)

FRON identifier-2 CROUNDEDJ

[; ON SIZE ERROR i,nperative-statementl

In Format 1, all literals or identifiers preceding the word FRON
are added together and this total is subtracted from the current
value of identifier-m storing the result inunediatelv into
identi f i er-m.

In Format 2, all literals or identifieT's preceding the woT'd FROM
aT'e added together, the sum is subtT'ac ted from 1 i teral-m or
identifieT'-m and the result of the subtraction is stored as the
new value of identifier-n.

If Format 3 is used, data items in identifier-I are subtracted
from and stoT'ed into coT'responding data items in identifieT"-2.

Each identifier must refer to a numeric elementaT'IJ item except
that:

In Foraat 2, the identifier following the word QIVINQ must
refer to either an elementary numeric item or an elementarv
numeT'ic edited item.

In Format 3, the identifiers must -refer to gT'oup items.

Each lite-ral must be a numeric literal.

The ROUNDED Phrase

The SUBTRACT stateaent mav optionally include the ROUNDED phrase.

If, after deciaal point alignment, the number of places in the
fraction of the -result of an arithmetic operation is greater than
the nuab•r of pl~cel provided for the fraction of the
resultant-identifier, truncation is 1"elative to the size provided
for the resultant-identifie-r. When rounding is requested, the
absolute value of the resultant-identifier is increased by one <1>
whenever the most significant digit of the excess is greater than
or eq,ual to five (5).

When the lotd-o'l"der integer positions in a reJultant-identifier are
represented by the character 'P' in the pictul'e fo1' that
resultant-identifi•r, rounding or truncation occu1's relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Ph~•••

If, after app1'op1'iate decimal point alignaent, the absolute value
of the result exceeds the largest value that can be contained in
the associated 1'esultant-identifier, a size erro1' condition
exists. If the ROUNDED phrase is specified, 1'ounding takes place
before checking for size 0 error.

PAGE 219

If th• 1'esultant-i.dentifier has CONPUTATIONAL-3 usage, size 91'1'0T'
is detected onlv fo,- data items declared with an odd length
pictu1'e clause. Therefore, all COMP-3 data items should be
declared with an odd number of character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier<s> affected bu the
size erro~ is not altered.

If the CORRESPONDING phrase is specifi~d, and anv o.P the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the individual
subtractions are completed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within
id.entifier-1 are SUBTRACTed from, and the t-esu.lt stored in, the
cot-t-esponding items in identifier~2. Data items referenced by the
CORRESPONDING phrase must adhere to the .Pol lowing 'ru.les;

A data item in identifier-1 and a data item in identifiet--2
must not be designated bv the kev word FILLER and must not
hav• the same data-name and the sam~ 4u~lifie'rs u~ to, but not
including, identifier-1 and identifiet--2.

Both of the data items must be elementat-v nume'ric data items.

The desct-iption of identifier-1
contain level-numbet-s 66, 77
clause.

and idttntifie-r-2 m..-st not
OT' ~ OT' theUSAQE IS INDEX

A data item that is subo'rdinate to ichtntifier-1 01'
identifiet--2 and contains a REDEFINES, RENAMES, OCCURS OT'

USAOE IS INDEX clause is ignored, as well as tJlose data items
subo-rdinate to the data item that contains 'the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses o-r be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation fo'r CORRESPONDING.

PI\OE 220

SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME.

SUBTRACT 1 FROM TALLY GIVING TALLY-1.

SUBTRACT 2.68, INTEREST, PENALTY
FRON PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

The UNLOCK Statement

The UNLOCK statement makes available to other programs the most
recently accessed record in a file that was read and locked.

FORNAT

UNLOCK file-name RECORD.

Note: The UNLOCK statement is nonstandard, but provides for
compatibility with existing programs written for
environments that allow multiple programs to concurrentlv
update a data file. For systems that do not provide this
capabilitv, the UNLOCK statement will not affect execution
except as described below.

The file associated with the file-name must be open in the I-0
mode.

If no record in the file is locked, execution of an UNLOCK
statement causes no action to be taken. If a record in the file is
locked <unavailable to other programs>, the last record to be
locked is then made available to anv other program upon execution
of the UNLOCK statetNnt.

The current record pointer is not affected bv the execution of the
UNLOCK statetnent. The FILE STATUS data item ••sociated with the
file, if one exists, is updated.

The UNLOCK statement•• not be used to unlock records locked bv
other prog'ratns.

Note: Records that are read and locked are autouticallv unlocked
by anv subsequent operation on that file from the same
program.

The WRITE Stateaent <Se11,uential 110>

The WRITE stateaent releases a logical record for an output file.
It can also be used for vertical positioning of lines ~ithin a
logical page.

FORNAT

WRITE record-n••• CFRON identifier-1]

C<BEFORJ:;) AJ)YANCINQ <<identlfier-2> CLINE l>l _
<AFTER> <<integer

< PAQE

} CLINES]}

>

Record-na•• and identifier-1 must n.ot retfe'l'ence th.e saae storage
af'ea.

The record-na•e is the name of a logical record in the File
Section of the Data Division and mav be qualifie:d.

When identifier-2 is used in the ADVANCINQ phrase, it aust be the
na•J of •tt el•••nt•.r\f inte1:er data itea.

Integer or the value of the data item referenced by identifier-2
MV lte zel'o.

Ttte assoc.i•teJI file w.,st t.e open in tlJe. OUTPUT or EXTQID aode at
the time of t.h• eacecution of this statetH1tft•.

·· Tfte . lt>l<ical 'record 1'eleased b'I the exacution 041 the WRITE
stat,aent i• no loft9er avai htble in the record 0 ·•.,.•••

Upon completion of a WRITE statement, the information
referenced bV identifier-1 is available even
information in the area referenced bv record-name
available.

in the
though

mav not

area
the

be

The current record pointer is unaffected bv the execution of•
WRITE statement.

The e1ecution of the WRITE statement causes the value of the FILE
STATUS dat.a item, if anc,, associated with t.h• file to be updated.

Tit• ma.ximu• ••cord size fol' • file is established at the time the
file is C'r••t•41 a11d meat not subseq,uentlv be changed.

The number of character positions on a mass stefrage device
required to store a logical record in a lile may or may not be
equal to the number ol character positions delined by the logical
description ol that record in the program.

The execution ol the WRITE statement releases a logical record to
the operating system. The contents ol the record area are not
changed.

Wh•n an attempt is made to write bevond the externallv delined
boundaries ol a sequential lile, an exc•ption condition exists.
The following action takes place:

The value of the
associated file is
violation.

FILE STATUS data item, if any, of the
set to a value indicating a boundarti,

If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure
will then be executed.

II a USE AFTER STANDARD EXCEPTION declarative is not
explicitly or implicitlv s,ecified lor·> the f,ile, "the ?'esult is
undefined.

The FRON Phrase

The results ol the execution of the WRITE stat•ment with tile FRON
phrase is equivalent to the execution ol the statement

NOVE identifier-1 TO record-name

accordin,g :to the rules specified for the NOVE stat•11ntnt, foll.owed
by the same WRITE statement without th•FRDNphrase.

The contents of the record area prior to the exec-tton of the
implicit NOVE statement have no effect on th• ex,ecution of this
WRITE statement.

PAOE 224

The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of
each line on a representation of a printed page. If the ADVANCING
ph'l"ase is not used, automatic advancing will be provided blJ the
compiler to act as if the user had specified AFTER ADVANCING 1
LINE. If the ADVANCING phrase is used, advancing is provided as
fol lows:

If identifier-2 is specified, the ~•presentation of the
printed page is advanced the number of lines •~ual to the
current value associated with identifie'l"-2.

If integer i5 specified, the representation of the printed
page is advanced the number of lines e~ual to the value of
integer.

If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced.

If the AFTER ph'l"ase is used, the line is presented after the
representation af the printed page is advanced.

If PAGE is specified, the record is p,resented on the logical
page before or after (depending on the phrase used) the device
is 'repositioned to the next logi~al page.

The ADVANCING phrase is valid onlv if the device-tvpe assigned to
the file is PRINT.

PAGE 225

THE WRITE STATEMENT <Relative and Indexed I-0>

The WRITE statement releases a logical T"ecord for an output or
input-output file.

FORMAT

WRITE T"ecoT'd-name CFRON i.dentifierJ

[;INVALID KEY impeT'ative-statementJ

Record-name and identifier must not refeT'ence the same stoT'age
area.

The reco.,.d-name is the name of a logical T'ecoT'd in the File
Section of the Data Division and••• be qualified.

The INVALID KEY phrase must be specified if an applicabl• USE
procedu-re is not specified fo1" .the associated file.

The associated file must be. open in the OUTPUT or 1-0 mode at the
time of the execution of this statement.

The logical -reco'l"d ,-eleas~d bv the executi,:,.- of the WRITE
statement is no lonte'I' available in the 1'eco1'd. ai-ea.

The cur'l'ent record poin~e-r is unaffected bv the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if anv, associated with the file to be updated.

The maximum -recoT'd size fo-r a file is established at the time the
file is created and must not subsequentlv be changed.

The number of chaT'acte-r positions on a mass storage device
required to sto-re a logical record in a file ••v or mav not be
etual to the number of character positions defined by the logical
4escT'iption of that record in the prog1'am.

The execution of the WRITE statement releases a logical record to
the ope-rating svste~

PAOE 226

When a relative ftile is opened in the output aode, recol'ds fNIJ be
placed into the ftile bv one of the following:

Ift the access mode is se~uential, the WRITE statement will
cause a record to be released to the Svstem. The ftirst reco,.d
will have a relative record number of one (1) and sub•e~uent
records released will have relative record numbers of 2, 3, 4,

. If the RELATIVE KEY data item has been specified in the
file control entrv for the associated file, the relative
record number of the record Just released will be placed into
the RELATIVE KEY data item bv the svstem during execution oft
the WRITE statement.

If the access mo.de is random or dvnafflic, prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item fflust be initialized in the program with the relative
reco~d number to be associat.ed '-'1th the ~eco,.d in the ,-ecord
area. That record is then released to the Svstem bv execution
of the WRITE statement.

When a r.elative file is- opened in the l"':'0 >•ode an4 the aq:ess mode
is random o,- dvnafflic, re~jrds are to be~inserted 0 in the associated
file. The value of the RELATIVE KEY data itam must be in.itialized
bu the p,-ogram with the relative record number to 't,'e associated
with the reco,-d . in the record area. l;xecution of a WRITE
statement then causes the contents of the ,-ecord •rea to be
released to the Svstem.

For an indexed file, the dat.a item specified as the priffle 1".ecord
kev must be set bv th.e p1".og1'am to the desi'red ,valve prior t.o the
execution of the WRITE statement. Reco-rds mav be placed int.a the
file bV one of the ,011owing:

If the access mode is se,uential, recot'ds must be released to
the Svstem in ascending order of p'rime recot'd kev values.

If the access mode is random or dvnamic, records mav be
released to the Svstem in anv program-specified order.

The FROM Phrase

The results of the execution oft the WRITE statement with the FROM
phrase is e~uivalent to the execution oft the statement:

MOVE identifier-1 TO record-name

according to the ,-ules specified for the MOVE statement, ftollowed
by the same WRITE statement without the FROM phrase.

PAGE 227

TIie ·cont•nts of tfl• record area prior to th• execution of the
ieplicit MOVE stateeent have no effect on the tn•cution of this
WRITE statement.

The INVALID KEV Phrase

The INVALID KEV condition exists under the follocdng
circumstances:

When the access eode is seq_uential for an indtr'Xed file opened
in the output mode, and the value of the prime record key is
not great•~ than the value of the. ·priee record key of the
pl'evious reco1'd, or

w11·en an indexed file is opened in the output or I-0 mode, and
the value of the prime record ke1 is eq,uat to.ihe value of a
prime 1'ecord kev of a record a11'eadv existing in the file, or

When.a relative file has random OT' dynamic access mode and the
RELATIVE KEV data item specifies a record 81h:ich ·all'eacllJ exists
i rt the f i 1 e, or

WIien an attempt is made to 111Tite beyond the extel'nallv defined
boundaries of the file.

Wiren the INVALID KEV condition is recog.nized the. ex.ecution of tlle
WRITE 11tatement is unsuccessful, the contents .of the· l'ecord area
are .. unaffttcted and the FILE STATUS. data item, i.f anv, associated
8'ith file-name of the asso1:iated file is set to a valt,e i.ndicating
the cause of the condition.

PAOE 228

APPENDIX A

ERROR NESSAQES

ERROR MESSAGES <Compile Time>

The text of the source program is checked fo,- syntax and semantic
erro,-s as it is .scanned. Erl'o-rs mav cause inte-r-ruption in
scanning. In this case, text ts igno,-ed until a recov&l'IJ point is
found and a resume message is p-rinted. Recovery points are chosen
to minimize the amount of unanalgzed text without producing
i-rrelevant e-rror messages. In any case the const,-ucts at fault are
u.nderma'l'ked and &1'1'01' messages 1 i sted when the •ource 1 ine is
printed. The erTo1' mfHisage includes eithe1' E's OT W's indicating
erl'OT' or warning. Fo-r example:

004030 02 STOCK PIC 9(16.)PPP COMPUTATIONAL.
$

***** 1)PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

indicates a semantic numbe1' size er-ror but

005040 02 PART PIC X<4BX<S> SYNC.
• • ***** 1)SYNTAX *E*E•E•E*E*E*E*E*E*l:*E*E*E*E*E*E*E*E*E*E

***** 2)SC~ RESUNE *W*W*W*W*W*W*W*W*W*W*W•W*W*W*W*W*W

indicates a svntax error at the first underma-rfc and• Tecoverv to
the second unde-rmark.

The ru,mlleT p'l'eceding the erl"or message is the undermal"lc nutnber,
covntin9 from left to right. More than one message mav t'efe'I' to
the sa.e undel"mertc;

Qlob.al el"roT's such as undefined para1raph natnes and i I legal
cont1"0l transfers are listed with the pT'ogram summat'tJ at the end
of the •ourc• listing.

Compilation alwa,s proceeds to the end of the pT'ogt"am, regal'd less
of the number of erT'ors found. ObJect code is produced such that
an attempt .to execute an erT'oneous statement wi 11 te"rminate
execution with an appropTiate error messag•.

PAOE 230.

CONPILER ERROR MESSAQES

ACCESS CLASH
Nonse,uential access given for se4uential file.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item.

The referenced identifier is not valid in a class
condition.

COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDlNQ
The CORRESPONDINQ phrase cannot be used with the
referenced identifier.

DATA OVERFLOW

DATA TYPE

The data area <working-storage and literals) is larger
than 65535 bvtes in length.

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier att~&•ute.

DOUBLE DEFINITION

DUPLICATE

Multiple definition of an id,mtifier.

W.rning anltJ. Multiple USE pTocedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description <FD>.

PAQE 231

FILE HANE ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NANE REGUIRED
Fil• name not given as reference in 110 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectlv qualified or is not defined as a data item
of the categorv alphanumeric within a record desc,-iption
entrv associated with that file name.

FILE RECORD SIZE ERROR
The l"eferenced file-name has a decla,-ed record size
which conflicts with the actual data record descri.tions
or is a relative organization file witb variable length
reco,-ds.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY
inco,-rectlv q_ualified, is defined in
description associated with that file-name, or
defined as an unsigned integer.

which is
a l"eCOl"d

is not

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorrectlv qualified,
WORKINO-STORAOE SECTION,
alphanumeric item.

Access or ortanlzation
underma,-lced statement.

has a status item which is
is not defined in the
or is not a two-characte,-

of file conflicts with

FILLER LEVEL
A nonelementarv FILLER item is declared.

OROUP CLASM
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH

IDENTIFIER

Wal"ning onlv. An item
VALUE IS clause is
JUSTIFIED, or USAOE
clause.

subordinate to a group with the
described with the SYNCHRONIZED,
(other than USAGE IS DISPLAY>

Identifier reference is incorrectlv const,-ucted o,- the
identifier has an invalid or double definition.

ILLEOM.. ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORN
A PERFORN statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in confli,::t with other attributes.

KEV REQUIRED

LABEL

LEVEL

LINKAGE

Relative key not declared for random access relative
file or record key not declared for indexed file.

Presence or absence of label r•~ord conflicts with
device standards.

Level-number given is invalid ei.ther intl"insically or
because of position within a group.

i ·;

An identifier in the USING clause of -.tle PROCEDURE title
is not a linkage item OT" a statement T'eferences a
l inlu1ge item not subol"d inate to a11 i,11enti~ier in the
USINQ clause •O.P the PROCEDURE title.

LITERAL VALUE
Litel"al value given is incorl"ect in context.

NOVE
Operands of NOYE verb specify an invalid move.

MUST BE INTEQER
Context requires decimal integer.

MUST BE PROCEDURE
Context req,uil"es procedure name either as -reference or
definition, or th.e reference must bea nondeclarative
procedure-name.

NUST BE SECTION
Context requires procedure-name to be section.

NESTINO
Illegal nesting of condition that is not
condition.

an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

OccuT's clause given at invalid level or after thT'ee have
been given for the same item.

OCCURS DEPENDINO ERROR
The referenced obJect of a DEPENDINO ph-rase has not been
defined corT"ectlv.

OCCURS-VALUE CLASH
VALUE 18 and OCCURS in effect foT" the same item.

PICTURE
Invalid pictu1"'e svntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH.
USAGE clause or implied usage conflicts with usage
iaplied by pictu're.

PROCEDURE INDEPINDENCE
PERFORM given. fo,- procedures in independent ••1•ents not
in tlae CUT'T'ltnt Stflfflffflt.

PROORAN ovnFLOW
Tlte in•t,.uction •"•• is 1·a1rfe1' than' 32767 bytes in •
length.

RECORD KEV
Raco-rd kev eec lared fol' .oth•-r than an indexed
ar1.ani1atio'ft file OT' a START stateaent KEV ph-rase
'ref'eT'ences a data it•m not aligned on the dee la-red lctt\l '•
leftmost bvte.

RECORD REGUIREO

REDEFINES

Context re~uires Peco-rd name.

REDEFINES fiven within an OCCURS or not 'redefining the
last allocat•d item.

PAGE 284'

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key
organization
references a

declared for oth•r than a relative
file or a START statement KEY phrase

data item other than th• declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or svmbol is given wheTe a use1'
word is req,uired. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was teTminat.ed at previous error
message and ,-esumes at undermarked character.

SECTION CLASH

SEPARATOR

SIQN

SIZE

A VALUE IS clause appeal's in the FILE or LINKAGE
section.

Warning only. Segment numbeT giv•n in an independent
segment is not the same as the current segment .or the
number of a new independent segment.

Warning only. Redundant punctuation or a separator is
not followed by the req,uired space.

,;,\;

SU~N clause given in conflict with usage and picture.

Warning only. Size of data referenced not correct for
context.

SIZE ERROR
Declared size
refel'ence.

of

PAGE 235

record conflicts with pl'esent

SUBSCRIPT

SYNC

SYNTAX

UNDEFINED

In.co1'1'ect nuebe1' of subsc1'ipts 01' indices
refe1'ence.

Synchronized clause given for a gro~p it••·

for

Incor-rect cha1'acter o-r -reserved wo-rd given fen• c .. ontext.

File -refe-renced in FD ent1'y was not defined.

a

UNDEFINED DECL""ATIVE PROCEDURE
A declarative stattt.!ftent -refe1'ences a p1'oceduT'e not
defined within the DECLARATIVES.

UNDEFINED PR~,EDURE
A OD TO stateeent refeT'ences an undefined OT' incor1'ectlv
qualified pa1'ag1'aph.

USE REQUIRED
A DECLARATIVES section eust begin with a USE stateeent.

USINO COUNT
Warning onlv. The item count in the USJHQ list of a CALL
statement is different fro• that of the fir•t reference
to the same pr.ogram name.

VALUE ERROR

VALUE

Value given in VALUE IS rect.ui T'ed t1'uncation of no1ue1'0
diJi tta. ,

VALUE IS clause given in conflict with otheT' declaT'ed
at1;ri6utes.

VARIABLE RECORD
Warning onlv. The INTO ph1'ase is not allowed with
variable size 1'ecords.

APPENDIX B

RESERVED WORDS

PAQE 237

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

* denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI COBOL reserved words not reserved bu the
compiler. Thei-r appearance will generate a wal'ning at the end
of the compilation listing.

** denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL

*BEEP
BEFORE
Bl..ANK

CALL
+CANCEL
+CD
+CF
+CH

CHARACTER
CHARACTERS

+CLOCK-UNITS
CLOSE

+COBOL
+CODE

DATA
DATE

+DATE-COMPILED
DATE-WRITTEN
DAY

+DE
+DEIUQ-CONTENTB
+DEBUO-ITEM
+DEBUQ-LINE
+DEBUQ-NAME

ALPHABETIC
+ALSO

ALTER
ALTERNATE
AND·
ARE

*BLINK
BLOCK

+BOTTOM

+CODE-SET
COLLATING

+COLUMN
COMMA

+COMMUNICATION
COMP

*CONP-1
•COMP-3

COMPUTATIONAL
•COMPUTATIONAL-1
•COMPUTATIONAL-3

+DEBUG-SUB-1
+DEBUQ-SUB-2
+DEBUG-SUB-3
+DEBUQGINQ

DECIMAL-POINT
DECLARATIVES
DELETE

+DELIMITED
+DELIMITER

DEPENDING

PAGE .238

AREA
+AREAS
+ASCENDING

ASSIGN
AT
AUTHOR

BY

COMPUTE
CONFI.GURATION
CONTAINS

+CONtROL
+eONTROLS
•CONVERT

COPY
CORR
CORRESPONDING

+COUNT
CURRENCY

+DESCENDING
+DESTINATION
+DETAIL
+DISABLE

DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

ttECHO +END-OF-PAGE ERROR
+EQI +ENTER +ESI

ELSE ENVIRONMENT +EVERY
+ENI +EOP EXCEPTION
+ENABLE EGVAL EXIT

END •ERASE EXTEND

FD FILLER +FOQTINQ
FILE +FINAL FOR
FILE-CtlNTROL FIRST FRON

+GENERATE 00 +OROUP
OIVINO GREATER

+HEADINO HI OH-VALUE
•HIQH HIOH-VALUfi;S

I-0 INDEXED INSPECT
I-0-CONTflOL +INDICATE INSTALLATION
IDENTIFICATION INI.TIAL .. INTO
IF +INITIATE INVALID
IN INPUT IS
INDEX INPUT-OUTPUT

JUST JUSTIFIED

KEV

LABEL +LIMIT LINES
+LAST. +LIMITS LINKAOE

LEADING +LINAQE LOCK
LEFT +4U1fAOE-COUNTER Low

+LENGTH LINE LOW-VALUE
LESS +LINE-COUNTER LOW-VALJJES

MEMORY MODE +MULTIPLE
+MERQE MODULES MULTIPLY
+MESSAOE MOVE

NATIVE NO NUMERIC
+NEOATIVE NOT

NEXT +NUMBER

OBJECT-COMPUTER OMITTED OR
OCCURS ON ORGANIZATION
OF OPEN OUTPUT''
OFF +OPTIONAL +OVERFLOW

PAOE +PLUS +PROCEDURES
+PAOE-COUNTER +POINTER PROCEED

PERFORN POSITION PROSRAl'I
+PF +POSITIVE

*;:=~t,-ID +PH ~INT
PIC +PRINTINQ
PICTURE PROCEDURE

+GUEUE GUOTE GUOTES

RANDON +RENAINDER ~EVERSE
+RD +RENDVAL +REVERSED

READ RENANES REWIND
~ECEIVE REP~l~ REWR.lTE

RECORD +REP°"T . +RF.
RECORDS +REPQftTINQ +RH'
REDEFINES +REPORT$ RIGHT
REEL +RERUN ROUNDEi).

+REFERENCES +RESERVE RUN
RELATIVE +RESET

+RELEASE +RETURN

SANE SIZE +SUB-GUEUE-2
+SD· +BORT +SUB-GUEUE-3
+SEARCH +SORT-NERO£ SUBTRACT

SECTION +SOURCE +SUN
SECURITY SOURCE~CONPUTER +SUPPRESS

+SEOl'Etff SPACE *4-&WITCH-1
+SEONENT-Lll'IIT SPACES **SWITCH-2
SELECT· SP!:CIAL~S I

+SEND STANDARD ,

SENTENCE STANDARD-1 ,
SEPARATE START **SWITCH-B
SEGUENCE STATUS +SVNBOLIC
SEGUENTIAL STOP SYNC
SET +STRINO SYNCHRONIZED
SIGN +SUB-OOEUE-1

PAK 240

*TAB
+TABLE

TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
*UNLOCK
+UNSTRINQ

VALUE

WHEN
WITH

ZERO

+

=

+TEXT
THAN
THROUGH
THRU
TIME
TINES

UNTIL
UP

+UPON

VALUES

WORDS
WORKINQ-STORAQE

ZEROES

>
<

PAQE 241

TO
+TOP

TRAILING
+TYPE

USAQE
USE
USINQ

VARYINQ

WRITE

ZEROS

* I

**

AlNSSO-ie>

::> XI <IN3dd\l

GLOSSARY

The terms in this appendix are defined in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages.

These definitions are also intended to be either reference
material or introductorv material to be reviewed prior to reading
the detailed language specifications. For this reason, these
definitions are, in most instances, brief and do not include
detailed syntactical rules.

Access Node:
The manner in which records are to be operated upon within a file.

Actual Decimal Point:
The physical representation,
characters period (.) or comma
in a data item.

using either of the dee imal .point
< , > , of the d e c i ma 1 p o int po s i t i on

Alphabet-Name:
A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, t~at assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character:
A character that b;elongs to the following set of letwrs: A, B, C,
D, E, F, Q, H, I, J, K, L, N, N, 0, P, 0, R, S, T, U, Y,, W, X, V,
Z, and the space.

Alphanumeric Character:
Any character in the computer's character set.

Alternate Record Key:
A key, other than the prime record key, whose contents identify a
record within an indexed file.

Arithmetic Expression:
An arithmetic expression
elementary item, a numeric
separated bv arithmetic
separated bV an arithmetic
enclosed in parentheses.

can be an identi9ier or, a numeric
literal, such identifiers and literals
operators, two arithmetic expressions
operator, or an arithmetic expression

PAOE 243

Arithmetic Operator:
A single character that belongs to the iollowing set:

Cha1"acte1"

+

* I

Ascending Kev:

Meaning

addition
subtraction
multiplication
division

A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparing data items.

Assumed Decimal Point:
A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition:
A condition caused during the execution of a READ statement for a
sequentially accessed file.

Block:
A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a
portion of a logical record. The size of a block has no direct
relation9'ftip to the size of the file witftin which 'the block is
contained or to the size of the logical 1"ecord(s) that a1"e eithe1"
continued within the block o,- that ovtt1"lap the block. The tttrm is
synonymous with physical recol"d.

Ca 11 e d PT'og 1"am:
A prog1"am which is the obJect of a CALL statement combined at
obJect time with the calling pl"ogl"am to produce a 1"Un unit.

Calling PT'ogram:
A program which executes a CALL to another program.

Character:
The basic indivisible unit of the language.

PAQE 244

Character Position:
A character position is the amount of physical storage required to
store a single standard data format character described as USAQE
is DISPLAY (one bvte>.

Character-String:
A sequence of contiguous characters which form a COBO&.. word, a
literal, a PICTURE character-string, or a comment-entrv.

Class Condition:
The proposition, for which a truth value can be determined, that
the content of an item is whollv alphabetic or is wholly numeric.

Clause:
A clause is an ordered set of consecutive COBOL character~strings
whose purpose is to specifv an attribute of an entrv.

COBOL Character Set:
The complete COBOL character set consists of,the 51 cha'f'acte'f'S
1 isted below.

Cha1'acter

0, 1, ... , 9
A, B, . .. , Z

+

* I -•
"
(

)

>
<

COBOL Word. <See Word>

Collating Sequence:

Meaning

digit
la~te'f'
space <blank>
plus sign
minus sign <hyphen>
asterisk
.st'f'oke <vir1ul,e. Jt~;At•fl>
equal sign · ·· ·
currency sign
comma (decimal point>
semicolon
period (d,,ec imal point>
quotation marf
left parenthesis
'f'iJht parenthesis
greater than sumbol
less than symbol

The seq_uence in which the c·haT'acters that are acceptable in a
computer a,-e OT'dered for purposes of comparing.

PAQE 245

Column:
A character position within a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the
print line and extending to the rightmost position of the print
line. ;

Combine~ Condition:
A conditi~n that· is the result of connectint t~o or more
conditions with the 'AND' or the 'OR 1 logical operator.

Comment-Entrv:
An entrv in the Identification Divi~ion that mav be any
combination of characters from the computer c,aracter set.

Comment Line:
A source program line repT'esented bv an asterisk in the indicator
area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line se'rves
onlv for documentation in a prog1'am. A special fo1'm of comment
line represented bg a itl"oke C/) in the indicator area of the line
and any characters from tke computer's character set in arei A and
area B of that line causes pate eJection prior to printing the
comment.

Compile-Time:
The time at which a COBOL_soo~c• program is tPanslated, b'J a COBOL
cocapileT-, to a COBOL ob Jett p?o1ram.

Co111piler Diret~ing f;itatement:
flt -•tatttm:ent~~ \WS9iWht2n1 11tith a comp~ ler di rec ting ve1'b, that causes
the compi1•1' to take .a s-pitific action du,-ing compilation.

Compl•x Condition:
A condition U, which one 01' 'more logical ope,-ators act upon one 01'
mo1'e conditions.

Compute,--Nacae:
A svstem-n-ame that identl0fies the computer upon which the Pl'Of'l"am
is to be compiled o1' run <commentarv only>.

PME_ 246 . __ ,

Condition:
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-1,
condition-2, ...) appears in these language specifications in or
in reference to 'condition' <condition-1, condition-2, ...) of a
general format, it is a conditional expression consisting of a
simple condition, optionallv parenthesized, con•isting of the
syntactically correct combination of simple conditions, logical
operatoTs, and paTentheses, for which a truth value can be
dete,-mined.

Condition-Name:
A useT-defined word assigned to a specific value, set of values,
o,- range of values, within the complete set of values that a
conditional va,-iable mav possess; or the use,--defined word
assigned to a status of a svstem software switch.

Condition-Name Condition:
The proposition, fo-r which a t-ruth value can be dete'rmined, that
the value of a cenditiohal variable is a membe,- of the set of
values att,-ibuted to a condition-name associated with the
conditional variable.

Conditional Expression:
A simple condition or a complex condition specified in an IF o-r
PERFDRN statement.

Conditional Statement:
A conditional statement spttcifies that the
condition is to be dete'rmined and that the
the obJect ,,.o.,.am is dependent on this truth

Con.di tional Va,-iab le:

truth value of a
subseq_uent action of
value.

A data item one 01' mol'e values of which has a condition name
assigned to it.

Configu,-ation Section:
A section of the Environment Division that desc'ribes overall
specifications of source and obJect computers.

PAOE 247

Connective:
A reserved word that is used to:

Associate a data-name, paragraph-name or condition-name with
its q,ual if i er.

Link t~o or more operands written in a series.

Form conditions <logical connectives>.

Contiguous Items:
Items that are described by consecutive
Division, and that bear a definite hierarchic
qther.

entries in th, Data
relationship to each

Counter:
A data item used for storing numbers or number representations in
a manner that permits these numbe1's to bt increas•d -..-r decreased
by the value of anethe1' nu•b•r, . OT\,; to be changed 01' reset to ~ ze1'o
or to an arJJ i t1'a1'fJ pos.i iiY• or negati Ytt value.

Currencu Sign:
The cha,-acter '•' of the COBOL character set.

Cu1'1"ency Sy•bol:
',""),

The character defined by
SPECIAL-~S pa'ragraph. If no
a COBOL source progt'am, the
currencv sign.

the CURRENCY SIQN clause in the
CURRENCY SIQN clause is present in
cur1"enc1 s1mlol is id.1tnth:al to the

Cut'1'ent Record:
The 'record which ts available in the 'record a1'ea associated with
the file.

Curt'ent Recot'd Pointer:
A conceptual entity that is used in the selection of the next
record.

Data Clause:
A clause that appears in a data desc,-iption entT'IJ
Division and p'rovides info'rmation describing
attribute of a data item.

PAQE 248

in the Data
a particula'r

Data Desc1"iption Entrv:
An entrv 'in the Dat• Description that is composed of a
level-number fol lowed btj a data-name, if req,ui1"ed, and then
followed btj a set of data clauses, as req,uired.

Data Item:
A characte1" OT" a set of contiguous characte1"s <excluding in either
case lite1"als) defined as a unit of data by the COBOL prog1"am.

Data-Name:
A use1"-defined wo1"d that names a data item described in a data
desc1"iption entrv in the Data Division. When used in the general
formats, 'data-name' 1"9p1"esents a word which can neither be
subsc1"ipted, indexed, nor q,ualified unless specificalltj permitted
bv the rules for that format.

Debugging Line:
A, debugging line {s anv line with 'D' in th• indicator area of the
line.

Decla1"atives:
A set of one OT" more special purpose sections, wri~ten at the
beginning of the P1"ocedure Division, the first of which is
p1"eceded bv the kev word DECLARATIVES and the , lut of which is
followed blJ the kev wo'rds END DECLARATIVES. A declarative is
composed of• section heade'r, followed btj a USE compiler di'recting
sentence, followed bv a set of zero, one 01" ao1"e associated
pa1"at1'aphs.

Declarative-Sentence:
A compile?-directing sentence consisting of a single USE statement
terminated bv the separato1" period.

Delimiter:
A character or a seq,uence of contiguous characters that identifv
the end of a string of characters and sepa1"ates that string of
characters f1"om the following string of characters. A delimiter is
not part of the string of charac~ers that it delimits.

Digit Position:
A dig i ~ posi ti·on' · is the ctmount of phvsicctl s,to?age ?eC{ui T"ed to
store a single digit. This 11mo.unt malJ va?IJ depending on the usage
of the data item describing the digit position.

PAQE 249·

Division:
A set of zero, one or more sections of paragraphs, called the
division bodv, that are formed and combined in accordance with a
specific set of rules. There are four <4> divisions in a COBOL
program: Identification, /Environment, Data, and Procedure.

Division Header~
A combination of words fol lowed by a p1rriod and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONNENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION CUSINQ data-name-1 Cdata-name-2J ... l.

Dvnamic Access:
An access mode in which specific logical records can be obtained
fl"om OT' placed into a mass storage file in a non sectuential imanne,
<see Random Access> and obtained ~rom a file in ·• sequential
manner <see Sequential Access>, during the scope of the &Rte OPEN
statement.

Editing Cha,-acter:
A single ch,aracter or fixed two-character cottbination belongi,ng to
the followin9 set;

B
0
+

CR
DB
z
* •
I

Elementaru Item:

space
ZftT'O
plus
,-1.nus
C'f" •. d it
debit
ze,-o supp,-ess
check protect
cur,-encv. s1'gn
comma <decittal poin,t>
period (decimal point.)
st:roke <vi'f\9ule, slash>

.A data it•• t,hat is desc,-ibed as not being fu-Pthe1' ·1,ogicallu
subdivided.

End of ProceduT'e Division:
The physical position in a COBOL sourc• p,-ogram after •htch no
furthe,- proc•dur•• appear.

PAQE 250

Entry:
Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

Execution Time. (See ObJect Time>

Extend Mode:
The state of a file after execution of an OPEN statement, with the
EXTEND phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Figurative Constant:
A compiler generated value referenced thTough the use of certain
reserved words.

File:
A collection of records.

File Clause:
A claus• that appear• •• pctrt ofl the file description <FD> ·•ntries
in the Data Division.

FILE-CONTROL:
The name of an Environt11ent Division parag'raph in which the data
files for a given source prog'ram are declared.

File Description Entrv:
An entrv in the File Section of the Data Division that is composed
of th• level indicator .FD, flollotsed lty a file-nat11e, and then
followed by a set of file clauses as re~uired.

File-Name:
A us•'l'•defined word that names a file described in a file
desc'ription entry within the File Section of the Data D.ivision.

File Organization:
The pel'manent logical file stl'uctul'e e•t•blisbed at the time that
a file is cl'eated.

PAQE 25.l

File Section:
The section of the Data Division that contains file description
entries together with their associated record descriptions.

Format:
A specific arrangement of a set of data.

ft"oup Item:
A named contiguous set of elementary or group items.

I-0-CONTROL:
The name ofl an Environment Division paragraph in which sharing of
same areas by several data files is specified.

I-0-Mode:
The state of a file aftet" execution of an OPEN statement, with the
I-0 phrase specified, fot" that file and before the execution ofl a
CLOSE statement for that file.

Identifier:
A data-name, followed as required, by the syntactically correct
combination of qualifiers, subscripts, and indices necest.ar41 to
make unique reference to a data item.

Imperative Statement:
A stat.Rtent th.at begin• with an iMp;erative ve1"b. and
unconditional action to be taken. An imperative
consist of a seq,uence of iatperative statements.

Index:

specifies an
statement may

· A data ittHh the content• of whJ.cfl represent. ttte identification of
a pa-rticular eleMent in a table.

Index Data Item:
A d•ta itRt in which the value associa1.ed with :an index-name can
be stored.

Index-Name:
A uset'-defined word that n•mes .a.n index as•ociated with • •pacific
table.

PAOE 252'

Indexed Data-Name:
An identifier that is composed of a data-name, followed by one or
more index-names enclosed in parentheses.

Indexed Fi le:
A file with indexed organization.

Indexed Organization:
The permanent logical file
identified by the value
record.

Input File:

structure in
of one fixed

A file that is opened in the input mode.

Input Node:

which each record is
length key within that

The state of a file after execution of an OPEN statement, with the
INPUT phrase specified, for that file and before tbe execution of
a CLOSE statement fo'r that file.

Input-Output File:
A file that is opened in the I-O mode.

Input-Output Section:
The section of the Environment Division that names the files and
the external media required by an obJect program and which
p'rovides information requi'red fo'r transmission and handling of
data during execution of the obJect program.

Integer:
A numeric lite'ral or a numeric data item that does not include anv
character positions to the 'right of the assumed decimal point.
Where the tel"m I integel"' appears in gener,al fo-rmats, intege,- must
not be a numel"ic data item, and must not be -,igned, nor zero,
unless explicitly allowed blJ the rules of that format.

Invalid Kev Condition:
A condition, at obJect time, caused when a specific value of the
lntv associatttd tilth an indexed 01" l"elative file is de.ter,n~ned to
be invalid.

KetJ:
A data item which identifies the location of a record.

PAQE 253

Kev Word:
A reseTved word whose presence is TequiTed when the format in
which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identifv a specific tvpe of file or
a position in hieTarchv.

Level-Number:
A 1,1ser-defined .111ord '-'hich indicates the :position of a. data item in
the hierarchical stTucture of a logical record or which indicates
special properties of a data description entrv. A level-number is
expressed as a one- or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of~ logical record. Level-numbers in the
range 1 through 9 mav be written either as a single digit or as a
zero followed bV a significant digit. Level-numbers 77 and 88
identifv special properties of a data description entrv.

Library-Nam•:
A user-defined word that names• COBOL lib'rarv that is to be used
bv the compiler for a given source program compilation.

Linkage Section:
The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items mav be TefeTred to bv both the calling and called
pTogram.

LiteTal:
A charact•r-string whose value is implied bv the ordered set of
characteTs compTising th• stTing.

' Logical Optrator:
One of the reserved words AND, OR, or NOT. In the ftor11u1.tion of a
condition,; b.oth or neither oft AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Mass StoTage:
A stor•ge medium on which .data mav be organized and maintained in
both a sequential and nonsequenti•l manner.

PME 254

Nass Storage File:
A collection of records that is assigned to a mass storage medium.

Mnemonic-Name:
A user-defined word that is associated in the Environment Division
with a specified svstam-name.

Native Character Sat:
The character sat associated with the COBOL Compiler <ASCII>.

Native Collating se,uence:
The collating se,uence associated with the native character set.

Negated Combined Condition:
The 'NOT' logical operator immediately followed by a parenthesized
combined condition.

Negated Simple Condition:
The 'NOT' logical operator immediately followed bg a simple
condition.

Neit Executable Sentence:
The next sentence to which control will•• transferred after
execution of the current statement is complete.

Next Executable Statement:
The next statement to .which control will be tn1nsfer1'ed after
execution of the curY'ent state•ent is cofflplete.

Next Record:
The record which logically follows the cuY'rent Y'ecord of a file.

Noncontiguous Iteas:
ElamantaY'g data items, in the
Sections, which bear no hierarchic
items.

Nonnumeric: Item:

Working-Storage
relationship to

•nd Link•1•
other data

A data item whose description permits its contents to be composed
of •nv combination of chaT'acters taken fT'Dffl the cofflputer's
characteT' set. Certain c:ategoT'ies of nonnumeric items may be
foT'med from •ore rest~icted characteT' sets.

Nonnumeric Literal:
A character-st-ring bounded by quotation marks. The string of
characters mag include any character in the computer's character
set. To represent a single quotation mark character within a
nonnumeric literal, two contiguous quotation marks must b• used.

Numeric Character:
A cha'racter that belongs to the following set of digits: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

Numeric Item:
A data item whose description restricts its contents to a value
represented bV characters chosen ftrom the digits '0' through '9';
if signed, the item mav also contain a '+', '-', or other
representation of an operational sign.

Num•ric Literal:
A literal composed of one or more numeric characters that also may
contain either a decimal point, or an algeb-raic sign, .o--r both. The
decimal point must not be the rightmost cllaracte-r. The •lgebY'aic
sign, if present, must be the ~eftmost cha'racte-r.

OBJECT-COMPUTER:
The name of an Environment Division . :pa'ragraph in whic·h the
coaq,utel' enviTonment, within which the obJect p'f'og'ram i• executed,
is descTibed.

ObJect of Entry:
A set of etperands, and -,.eserved wotds, with-in a Data Division
entrv, that immedfatelv follows the subJett of the e'nt'l'y.

ObJect PY'OgTam:
A set 0l" group of executable instY'tictions and othe1' mate'rial
designed to intel"act with data to p'rovide pY'oblem solutions. In
this context, •n obJect progr•m is generallg the l"esuJt of the
operation of• COBOL compile.,. on• source pl'C.gY'all. Whe're tker-e is
no danger of a11biigui tv, . the wo1rd 'prog1'affl' alone mav IJe used in
place of the phrase "obJect p1'og1ram'. ·

ObJect Time:
The time at which an obJect pl"og-ram is executed.

PAOE 256

Open Node:
Th• state of a file after execution of an OPEN stateaent fo,- that
file and befor.e the execution of a CLOSE statement fo,- that file.
The particula,- open ,aode is specified in the OPEN stateaent as
either INPUT, OUTPUT, I-O, or EXTEND.

Occurrence Number:
The relative data item nuaber in a table.

Operand:
Whereas the general definition of operand is 'that coaponent which
is operated upon', for the purposes of this publication, anv
lowercase word <or words) that appears in a stateaent or entry
fo1"mat •av be considered to be an operand and, •• such, is an
implied reference to the data indicated b9 ~he operand.

Ope,-ational Sign:
An algebraic sign, associated with a
nuaeric literal, to indicate whether its
negative.

Optional Word:

numeric data item or a
value is positive or

A reserved word that is included in a specific format only to
improve the readabilttv of the language and whose pl"esence is
optional to the user when the foTmat in which the wctt'd appeat's is
used in• source pregra,a.

Output File:
A file that is opened in either the output 111ode or extend aode.

Output Node:
.The state of • file afteT execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement fo1' that file .

.Par•1-r•ph:
In the P..-oc•du1'e Division, a pa;ragraph-name followed by a pe.1'tod
and a space and bv 2e1'o, one, or mo..-e sentences. In the
Identification and Environment Divisions, a pa..-agraph heade,
followed bv zero, one, o..- more entries.

PAOE 29:7·

Paragraph Header:
A reserved word, followed bV a period and a space
the beginning~, a paragraph in the Identification
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROQRAN-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NANES.
FILE-CONTROL.
1-0-CONTROL.

Para.graph-Name:

that indicates
and Envil'onment

A user-defined word that identifies and begins a pa1'ag1'aph tn the
Procedure Division.

Ph1'as•:
Apht'ase is an ordered
charactel'-strings that
statement or of a COBOL

set of
.form a
clause.

PlHJSical RecoNI. <See Block)

PTime Reco1'd Key:

one 01' more
pol'tion of

cons•cutive COBOL
a COBOL p1'oce1ht1'al

A kev whose contents uniciuelv identify a Pecord within an indexed
f 1.1 •.

Procedure:
A paragraph or group of logicallv successive para9-raphs; or a
section or g1'oup of logicallv successive sections, witllin the
Procedu'r•lt Division.

Procedure-Name:
A user-defined word which is used to name a pa1'agraph or section
in the Procedure Division. It consists of a paragraph-name <which
mav be ciualified>, or a section-name.

PT' og ram-Name:
A useT'-defined word that identifies a COBOL souT'ce progT'am.

Punctuation Character:
A characteT' that belongs to the following set:

Character

H

(

)

-
Qualified Data-Nam•f

Meaning

comma
semicolon
period
quotation maT'k
left paT'enthesis
T'ight p•renthesis
space
equal sign

An identifier that is composed of• data-n•me followed blJ one OT'
moT'e sets of either of the connectives OF and IN followed blJ a
dat•-name qualifier.

Qualifier:
A data-n•me which is used in a reference together with another
data name at a lower level in the same hierarchv. A section-na••
which is used in a refe'rence togethel' with a paragra.p.b-n•••
specified in that section.

Rando• Access:
An access •ode in which the pT'ogra•~specified value of a ftev data
item identifies the lo9ical -rttcord that is obtained from, deleted
from, or placed into a -relative or indexed file.

Record Area:
A sto-rage area allocated fol' the purpose of processing the recoTd
descl'ibed in a record description entrv in the File Section.

Record Description. <See Record DescTiption Entrv>

Record Description EntT'y:
The total set of data description entries associated with a
particular record.

Record Kev:
The prime record kev whose contents uni~uelv identify a record
within an indexed file.

Record-Name:
A user-defined word that names a record described in a record
description entrv in the Data Division.

Reference Format:
A format that provides a standard method for describing COBOL
source pT'ogT"ams.

Relation. <See Relational OpeT"ator>

Relation Character:
A chaT'acter that belongs to the following set:

Character

>
< -

Relation Condition:

Meaning

greater than
less than
•~ual to

The pT'oposition, for which a truth value can be determined, that
the value of a data item has a specific relationship to the value
of another data item. <See Relational Operator>

PAO&: 260

Relational Operator:
A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

Relational Operator Meaning

IS CNOTl GREATER THAN Greater than or not
IS CNOTl > greater .than

IS CNOTJ LESS THAN Less than or not
IS CNDTl < less than

IS CNOTJ EGUAL TO Eq,ual ,.to or not
IS CNOTJ - eq,ual to

Relative Fi le:
A file with relative or9anization.

Relative Kev:
A kelJ whose contents identifies a logical record in a relative
file.

Relative Organization:
The permanent logical file structure in which each record is
uniq,uellJ identified by an integer value gt'eater than zero, •,:Which
specifies th~reco,-d', logical ordinal position in*"• fil•.

Reserved Word:
A COBOL word specified in the list of words which
COBOL source programs, but which must not appear in
as user-defined wo,-ds or system-names.

Run Unit:

mav be used in
the prograt1s

A set of one or mot'e obJect programs which function at obJect
time, as a unit to pt'ovide problem solutions.

Section:
A set of zero, one, 01' more paragraphs or entries, called a
section body. the fi,-st of which is preceded by a section-header.
Each section consists, of th.e section header• and the, 'related
section bodv.

Section Heade.,.:
A COMbination of flf01'dS
indicates the beginnitig of
P1'ocedu1'e Division.

followed bV a pa1'iod and• space that
a section in the Envi1'on•ent, Data and

In the Envi.,.on•ent and Data Divisions, a section
co•posed of rese.,.ved wo1"ds followed bv a· pe1'iod and a
pe-r•issible section heade1's are:

In the Envi1'on•ent Division:

CDNFIOURATION SECTION.
INPUT-OUTPUT SECTION.

FILE SECTION.
WORKINO-STORAOE SECTION.
LINKAOE SECTION.

header is
space. The

In the P1'ocedure Division, a sec•tbn header is composed of a
section-name, followed bg the -reserved word SECTION, followed bg a
segm.ent-numl>er <:optional>, followed by a pe1"iod and a space.

Section-Na••=
A user-defined word which names a section in the Procedure
Division.

Seginent-Nu•lte1":
A ostt?_.1:iefined wot-ti which classifies sections in the P-roc1du1'e
Diviaion fot- pu,-poses ef sesuaentation. Segment-numbe1"s mav contain
onlv the charact•rs '0', '1 ', ... , '9'. A segment-numbe1' mav be
expressed either as a one- or two-digit number.

~ . .

Sentence:
A stttuence of one 01' more statements, the last of which is
te1"minated by a pe1"iod fol lowed bv • space.

Sepa1'ato1":
A punctuation character used to delimit characte1'-st1'ings.

Seq,uentUtl <Access:
· An atdtss •ode in which logical records
plac•d into a file in a consecutive
109ic11l re.cord sequence determined blJ the
fiUt.

are obtained from or
•••decess~r-to-successor
order of ~•cords in the

Seq,uential File:
A file with seq,uential organization.

Seq,uential Organization:
The per.anent logical file structure
identified bu a predecesso~-successor
when the record is placed into the file.

Simple Condition:
Anv single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status conditi~n
(simple-condition>

SOURCE-COMPUTER:

in which a
relationship

record is
established

The name of an Environment Division paragraph in which the
computer environment, within which the source program is compiled,
is described.

Source ProgT'am:
A svntacticallV correct set of COBOL statements beginning with an
Identification Division and ending With the end of the Proce~ure
Division. In contexts whet'e th•r• is no danger of ambigu'itv, the
woT'd 'progNam' alone mav be used in place of the phrase 'source
pl'ogram. '

PAQE 263

Special Character:
A character that belongs to the following set:

Character

+

* I -•
II

(

)

>
<

Special-C::tl•r•cter Word:

Meaning

p.lus •ign
ainu• sign
asterisk
stroke (virgule, slash)
eq_ual sign
cu'l'renct sign
comma (decimal point>
semicolon
period (decimal point>
ctuotation mark
le,ft parenthesi•
l'ight parenthesis
greater than svmbol
less than •v•bol

A T'eserved word which is an arithmetic operator Of'! •·':relation
cha'racter.

SPiC I.AL-NAMES:
The name .of a.n Environment Dhtision paragltaph in which
switch-na,aes •r• 'related to usel'l"'.':de#ined .,words.

Standal'd Data Format: .
Th.e concept used in describing the t:hal'actet'istics of data _rin •
COBOL Data Division un.del' the character.istics or pT'operties of the
data are expressed in a form oriented to the appearance of the
data on a pl"inted page of infinite length and breadtll, Tathe,- tha11
a form oriented to the manner in which the data is stored
internalllJ in the computer, OT' on a pa-rticulal' exte'rnal medium.

Statement:
A svntactically valid combination of words and sumbols written in
the Procedure Division beginning with a verb.

SubJect of Entrv:
An opel'and ol' resel'ved word that appears immediatelv following th•
level indicator or the level-number in a Data Division ent~v.

Subprogram. (See Called P~ogram>

Subsc'l"'ipt:
An intege'I"' whose value identifies a particular element in a table.

Subscripted Data-Name:
An identifier that is composed of a data-name followed blJ one or
more subscripts enclosed in parentheses.

Switch-Status Condition:
The proposition, for which a truth value can be determined that a
switch, capable of being set to an 'on' or 'off' status, has been
set to a specific status.

SIJ stem-Name:
A COBOL word which is used to communicate with the operating
envi 'l"'onment.

Table:
A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items comprising a
table.

Tex t-N41me:
A file access name that identifies library text.

T'l"'uth Value:
The representation.of the result of the evaluation of a condition
in terms of one of two values:

true
false

Vn•ry Op•rator:
A plus<+> or• minus
left par•nth••i• in
effect of multiplying

User-Defined Word:

<-> sign, which precedes a variable or a
an arithmetic expression and which has the

the expression blJ +1 or -1 respectively.

A COBOL word that must be supplied by the user to satisflJ the
format of a clause or statement.

PAOE 265

Variable:
A data item whotu, value mav be changed btJ execution of the obJect
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb:
A word that expresses an action to be taken btJ a COBOL compiler or
ob Ject program.

Wo1"d:
A chaT'acter-string of not more than 30 characters which foT'ms a
user-defined llfOT'd, a svstem-name, or a reserved word.

WoT'king..,.StoT'age Section:
The section of the Data Division that desc-ribes wo.1"king sto,-a9e
data items, composed either of noncontiguous items or of working
sto,-age 'l"ecords or of both.

77-Leve 1-Desc'I" i.p ti on-Ent-rv:
A data descc-ription entrv that desc-ribes a noncontiguous dt1ta item
with the level-numbe'I" 77.

APPENDIX D

COMPOSITE LANQUAQE SKELETON

PAOE 267

CONPDSITE LANOUAOE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to displav
complete and svntacticallv correct formats.

For the general formats of the four divisions the leftmost margin
is equivalent to margin A in a COBOL source program. The first
indentation after the leftmost margin is equivalent to margin Bin
a COBOL source program.

For the general formats of the verbs and conditions the leftmost
margin indicates the beginning of the format for a new COBOL verb.
The first indentation after the leftmost margin indicates
continuation of the format of the COBOL verb.

The following is a summarv of the formats shown on the following
pages:

Identification Division general format
Environment Division general format

- The three formats of the file cont,-ol entry
Data Division general format

- The three formats for a data description entrv
The format for a field definition entrv

- Procedure Division general format
- Qeneral format of verbs listed in alphabetical order

Qeneral format fo1' conditions
Formats for qualification, subscripting, indexing, and

an identifier
Qeneral format for a COPY statement

PAOE 268

RN/COBOL LANOUM!: SYNTAX

The RN/COBOL language is based upon the ANSI X3.23-1974 COBOL
standard. Ninor departures from that document are reflected in the
syntax description which follows but are not separately noted.
Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases sepal'ate formats a1"e comb:ined and
general terms al'e employed for user names.

System-names and implementation restrictions are:

computel'-name:
program-name:
switch-names:
device-types:

external-ft le-name:

User-defined word
a-character name
SWITCH-1, ... , SWITCH-a
PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDON
One- to thirtv-character name

PM! 269

IDENTIFICATION DIVISION 8ENERAL FORMAT

IDENTIFICATION DIVISION.
---~---------- --~----
PROORAN-ID. program-name.

[AUTHOR. Ccomment-entTyl ... l

[INSTALLATION. Ccomment-entryl l

CDATE-wRITTEN. Ccomment-entryl l

[SECURITY. Ccomment-entrvl ... l

PAOE 270.

ENVIRONMENT DIVISION GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIQURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name

C, MEMORY SIZE integer <WORDS >J
-~----

<CHARACTERS} --------.-----
<MODULES >

C, PROORAN COLLATING SEQUENCE ts alphabet-namel.

[SPECIAL-NANES. C, switch-name

<ON STATUS IS condition-name-! C, OFF STATUS IS condition-name-2l)l

<OFF STATUS IS condition-name-2 C, ON STATUS JS condition-n•me-ll>l --
C, alphabet-name IS <STANDARD-l}J

<NATIVE > -.....
C, CURRENCY SION IS literal-ll

C, DECIMAL-POINT IS CONMAl. l

PAGE 271

£INPUT-OUTPUT SECTION.

FILE-CONTROL.

<file-cont~ol-ent~v>

C I-0-CONTROL.

C; SANE AREA FOR file-name-1 C, file-name-21 ... l ll

PME 272 "l

FILE CONTROL ENTRY GENERAL FORNAT

FORNAT 1

SELECT file-naae

ASSION TO devic•-tvp• <"exteT'nel-fil•-n•••">
----- (dat•-n••e-1 >

t; OROANIZATION IS SEQUENTIAL]

C; ACCESS NODE IS SEGUENTIALJ

t; FILE STATUS IS data-name-2l.

FORNAT 2

SELECT file-n••• --------
ASSION TO RANDOM, <"exteT'nal-fi le-naae''>
---- ---- <data-n•••-1 >

; OROANIZATION IS RELATIVE

c, ACCESS NODE IS< SEQUENTIAL [, RELATIVE KEV
------ ---------- ---------

<<RANDOM> ' RELATIVE KEV ------- --------
<<DYNAMIC> -----

[; FILE STATUS IS data-name-3J. ------

PAOE 273

IS data-n•••-2l> l

IS data-name-2 >

>

FORMAT 3

SELECT file-name

ASSIGN TO RANDOM, -C 0 extel'nal-file-name">
------ ----- <data-name-1 >

; OROANIZATlON IS INDEXED -----------
t; ACCESS MODE IS <SEGUENTJAL>l

<RANDON >

<DYNANIC >

J RECORD KEV IS data-name-2

£; ALTERNATE RECORD KEY IS data-name~3 £WITH DUPLICATESll ...

t1 FILE STATUS IS data-name-4l.

PAQE 274

DATA DIVISION QENERAL FORNAT

DATA DIVISION.

[FILE SECTION.

CFD file-name

[; BLOCK CONTAINS Cintege,--1 TOJ integeT-2 <RECORDS >J

<CHARACTERS>

[; RECORD CONTAINS Cinteger-3 TOJ intege,--4 CHARACTERS]

; LABEL <RECORD IS > <STANDARD>

<RECORDS ARE> <OMITTED>

C; VALUE OF LABEL IS nonnume,-ic-literal-11

[; DATA <RECORD IS > data-name-1 C, data-name-2J ... J

<RECORDS ARE>

c,-ecot"d-descl"iption-ent-rvl . . . l ...

CWORKINQ-STORAQE SECTION.

C77-leval-desc1"iption-ent1"vl ... l
C-raco1"d-dasc1"iption-ant1"V J

CLlNKAQE SECTION.

[77-leval-desc,-iption-entTtjl . . . JJ
Creco,-d-description-antTIJ J

PAC>E 275

DATA DESCRIPTION ENTRY QENERAL FORMAT

FORMAT 1

level-number {data-name-1)
<FILLER >

C; REDEFINES data-name-2l

C; <PICTURE> IS character-string]

<PIC >

C; CUSAQE ISJ <CONPUTATIONAL >l

<CONP >
<CONPUTATIONAL-1)

{CONP-1 >
<CONPUTATI~L-3>. __,. __________ _
<CONP-3 >
<DISPLAY >

<INDEX >

[; CSIQN ISl TRAILING [SEPARATE CHARACTERJ l

[; OCCURS <integer-1 TIMES >
----- <integer-1 TO integer-2 TINES DEPENDING ON data-na••-3>

[INDEXED BY index-name-1 C, index-name-21 ... l l
~-------

PAQE 276

C; <SYNCHRONIZED> CLEFT l l

<SYNC } CRIQHTl

[; <JUSTIFIED} RIQHTl

<JUST }

C; BLANK WHEN ZERO]

C; VALUE IS literal]

FORNAT 2

66 data-name-1; RENANES data-name-2 C{THROUQH) data-nama.-3].

<THRU }

FORNAT 3

88 condition-name; <VALUE IS }

<VALUES ARE}

literal-1 C(THROUOH} literal-21

<THRU)

C, 1 i teral-3 C<THROUOH) 1 i teral-41 l

<THRU >

PROCEDURE DIVISON QENERAL FORNAT

FORNAT 1

PROCEDURE DIVISION [USING data-name-1 C,data-name-2J ... J. ------------- --------- --·-.--
CDECLARATIVES. ___ ..., ________ _

<section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] ... J ... }

END DECLARATIVES. l

<section-n•me SECTION tsegautnt-numberl.

Cparagraph-n•••· Csentencel ... l ... >

END PROORAN.

FORl'IAT 2

PROCEDURE DIVISION CUSINO data-n•me-1 C, data-n'ime-2l . . . l .

<p•r•graph-name. Csentencel . . . > ...
END PROORAN.

OENEftAL FORMAT FDR VERBS

ACCEPT {identifier-1 C, UNIT {identifier-2}]
----- --- <literal-1 }

C, LINE (identifier-3}J [, POSITION <tdentifier-4>J
<literal""'2) -------- <literal-3 · }.

C, SIZE <identifie1"-5}J [, PROMPT Cliteral-5Jl
<literal-4 }

_____
[, ECHO] [, CONYERTl [, TABJ C, ERASE] C, NO BEEPJ ------ ------- ----- -- ----
C, <OFF}] C, ON EXCEPTION identifier-6 imperative statement]) ...

ACCEPT identi.fier FROM <DATE>

(DAY>

<TIME>

ADD {identifie1"-1) C, i1'entifier-2J ... TO identifier-a [ROUNDED]
<l i te,-al-1 > C, 1 i te'ral-2 J -------

[; ON SIZE ERROR i111p•rative-stateaentl

ADD <identifi:e,--1>, <ident.ifie1"-2) C, .f:cJentifier-3J
<liteTel-1 > <literal-2 > C, litet'al-3 l

QIVINQ identifier-a CROUNDEDJ

[; ON SIZE ERROR iaptt1'ative-stateaentl

ADD <CORRESPONDING) i.dentifie,--1 TO identifier-2

<CORR >

CRDUNDEDJ [; ON SIZE ERROR imperative-statement]

PAQE 279

C, procedur•-name-3 TO [PROCEED TOJ procedure-nam•-4l

CALL <icJentifte,--1) CUSJNG data-name-1 C, data-n•••-2l l
<litel'al-1 > -----

CLOSE fil•-M••-1 [(REEL) CWITH NO REWIND] l

<UNIT> ..----~,
WITH <NO REWIND> --,....... __

<LOCK >

C, file-name-2 C<REEL> CWITH NO REWINDJ l l ...

<UNIT>

WITH <NO REWIND>
,...,_ -------

<LOCK >

.. CONPUTE i,dentifie,--1 CROUNDEDJ • ari:tltt11etic-e:xpressi·on --------- ---------
C, ON SIZE ERROR iape,-ative-stateuntl

DISPLAY <<itlentifie,-.... t) C, UNIT '(.ifl:•ntifia,-.... 2) l
----- <lite'ral-1 ·> --- <li-te,-al-2 >

[, LINE (iden1ri-fitt'r'"'3)lC., POSITION (ide:ntifi•'r~4>l
<l i tel'al-3 > -------- -<lit•rat--4 >

C, SIZE <idantifie'r-,>JC, BEliPlt, .211MIE1
---- (lite,-al-5 > -----

C, <HIOH>JC, BLINKJC, REVERSEJ>

<LOW>

DIVIDE <identifier-1> INTO identifier-2 CROUNDEDl
------ (literal-1 > ---- ------

CJ ON SIZE ERROR imperative-statementl

DIVIDE (identifier-1> INTO {identifier-2} OIVINQ identifier-3
----- <literal-1 } <literal-2 > ------

[ROUNDED][; ON SIZE ERROR imperative-statementl _____ ------
DIVIDE (identif!ier-1> BY (identifier-2> OIVINQ identif!ier-3 CRDUNDEDJ
------ (literal-1 > -- {literal-2 > ------ -------

[; ON SIZE ERROR imperative-statement]

EXIT CPRDORANJ.

OD TD procedure-name-1

OD TD procedure-name-1 C, froce4ure~name-2J ... , p1'ocedu,-e-name-n

DEPENDINO ON identif!ie1'

IF condition; <statement-1 > <, ELSE state111ent..;.:z > ---~--
<NEXT SENTENCE>(; ELSE NEXT SENTENCE>

PAOE as

INSPECT identi,ieT'-l

CTALLYINQ identifie1'-2 FOR <<ALL l- <ldenti.PieT''1"'3)>
(liteT'al-1 >>

<<LEADING> _____,_.,._c

< CHARACTERS >

C<BEFORE> INITIAL (identifieT'-4}ll
------ <liteT'al-2 >

<AFTER>

[REPLACING <<ALL } <tden1;ifie,-•5>> av <identiflieT'-6}
<literal-3 > <liteT'al-4 >

<<LEADING> >

<<FIRST >

{ CHARACTERS

>
.}

C<BEFORE> INITIAL <identifie1'-7)ll
------ <liteT'al-5 >

<AFTER>

NOTE: The TALLYING option. the REPLAClNeoption. o-r both
options must be selected.

PAOE ·282

NOYE <identifie~-1> TO identifi•~-2 C, identifier-3] ...
{literal > --

NOVE <CORRESPONDING> identifier-1 TO identifier-2

{CORR)

MULTIPLY {identifier-1> BY identifier-2 [ROUNDED]
-------- <literal-1 > ---~---

[; ON SIZE ERROR imperative-statement]. ------ _____ .,...

MULTIPLY {identifier-1> BY (identifier-2> GIVING identifier-3
-------- <literal-1 > -- <literal-2 > ------

[ROUNDED][; ON SIZE ERROR imperative-statement]

OPEN <<INPUT file-name-1 [WITH NO REWIND])

C, file-name-2 CWITH NO REWIND] ...

<OUTPUT file-name-3 CWITH NO REWINDJ>
,__ ------

C, file-name-4 [WITH NO REWINDJJ ...

<I-0 file-name-5)[, file-name-61 ...

<EXTEND file-name-7>C, file-name-SJ ... > ...

PAOE 283

PERFORN procedur•-n•••-1 t<THROUOM> procedure-name-2l

<THRU >

PERFORM procedure-name-1 [<THROUGH} procedure-name-2l

<THRU >

<identifier-1> TINES
<literal-1 > -----

PERFORN procedure-name-1 [<THROUGH> procedure-name-2J

<THRU >

UNTIL condition-1

PERFORN procedure-name-1 [(THROUGH> procedure-name-21 .,._.., ... __ _
<THRU >

VARYING {identifier-2> FRON <identifier-3>
------- <index-name-1> ---- <inde.x-name-2>

{lite1'al-1 >

BY (identifier-4> UNTIL condition-1
-- <literal-3 > -----

CAFTER (identifte,--5) FRON <identifier-6>
----- <index-name-3> ---- <index-name-4>

<Ii te'l'al""l'B. , . >

BY <identifier-7> UNTIL condition-2
-- <literal-4 > -----

[AFTER <identifier-B> FRON <identift..er-9>
----- (index-name-,> <index-name-6>

<lite,-al-5 >

BY (identifier-10) UNTIL condition-3 J l
(lite,-al-6 > -----

READ file-name RECORD CINTO identifier]

C; AT END imperative-statement]

READ file-name CNEXTJ RECORD CWITH NO LOCK] CINTO identifier] -
CJ AT END imperative-stat11mentl

READ file-name RECORD [WITH NO LOCKJ CINTO identifier] --- ---- -----
[; KEY IS data-name]

[; INVALID KEY impe,.ative-statementl

REWRITE record-name [FRON identifier]

C; INVALID KEY imperative-•tatementl

SET (identifieT'-1 C,identifieT'-21 ... > TO {identifier-3>
<index-name-1 C,index-name-2] ... > <index-name-3>

<int99er-1 >

SET index-name-4 C, index-name-5] ... <UP BY > {identifie,.-4}
{integ•1'-2 >

<DOWN BY>

PAGE 289

START ,ile-name CKEY <IS EOUAL TD > data-n.,.el ----- -----
<IS= J,

<IS QREATER THAN > -------
<IS> >
<IS NOT LESS THAN>

---,.~ ---
<IS NOT< >

[; INVALID KEY impe-rative-statementl -----
STOP <RUN >

<lite-ral >

SUBTRACT <identifie-r-1} C, identifie-r-2] ... FROM identifie-r-m
-------- < 1 i tera 1-1 > C., 1 i teral,-.2 l ----

CRDUNDEDl C; ON SIZE ERROR impe-rative-statementl ~--------- -----.- _..,...,,..
SUBTRACT {i:dent;ifie-r-1> [, identifier-2]
-------- <literal-1 > C,literal-2 l

QIVlNQ identifie,--n CROUNDEDJ

[; ON SIZE ERROR imperative-statement]

FROM {identifier-m>
---- (literal-m >

SUBTRACT <CORRESPONDINQ> identifier-1 FROM identif.ier-2 CROUNDEDl

<CORR >
C; ON SIZE ERROR imperative-statement]

UNLOCK file-name-1 RECORD

PME 286

USE AFTER STANDARD <EXCEPTION)

<ERROR >

PROCEDURE ON <file-name-1 C, file-name-2l ... >

<INPUT

(OUTPUT

(1-0

<EXTEND

<BEFORE> Al'VANCINO <<identifier-2> <LINE>>
------ <<integer > <LINES>>

<AFTER> < PAQE >

WRITE record-name CFROM identifier]

c, INVALID KEV imperative-statement]

)

}

}

}

OENERAL FORMAT FOR C.ONDITIONS

RELATION CONDITION:

<identifier-1 > <IS CNOTl QREA TER THAN>
<ltteral-1 > ------
<index-name-1 > <IS CNOTl LESS THAN

<IS CNOTJ EQUAL

<IS CNOTJ >
<IS CNOTJ <
<IS CNOT··l •

CLASS CONDITION:

identifier IS CNOTl <NUMERIC >

<ALPHABETIC>

CONDITION-NAME CONDITION:

condition-na••

SWITCH-STATUS CONDITION:

condition-n•••

NEOATED SINPLE CONDITION:

NOT sintple-condition

PAGE 218

TO

>
}

>

>

)

'.tidentifier-2)

-Clite1"al-2 >
(index-name-2 >

COMBINED CONDITION:

condition <<AND> condition> ...

{OR >

PAOE 299

MISCELLANEOUS FORMATS

GUALIFICATION:

<data-naae-1 > t<OF> data-name-2] ...
<condition-naael-

<IN}

paragraph-naae C<OF> section-name]

<IN}

SUBSCRIPTINQ:

<data-naae > Csubscript-1 C, subscript-2 C, subscript-3J l >
<condition-naae>

INDEXINQ.:

<data-na•• > <<index-naae-1 t<+> literal-21>
<condition-name> <literal-1 <-> >

C, <index-naae-2C<+> literal-43)
<literal-3 <-> >

C, <index-name-3 C<+> literal-cl> l l >
<literal-5 <-> >

PAQE 290

IDENTIFIER:

FORNAT 1

data-name-1 C<OF> data-name-2] ...

<IN)

C(subscTipt-1 C, subscript-2 C, subscript-3] l > l

FORNAT 2

data-name-1 C<OF> data-name-2] ... C< <index-name-1 [(+} literal-2J
<literal-1 <-}

<IN>

C, <index-name-2 t<+> literal-4J}
<literal-3 <-> >

C, <index-name-3 C<+> literal-6l} lJ)J
<literal-5 <-> >

PAQE 291

GENERAL FORMAT FOR COPY STATEMENT

COPY :.ext-name

PAOE 29:2.

COBOL LEVEL OF IMPLEMENTATION

Function Module

Nucleus
Table Handling
Settuential I/0
Relative I/0
Indexed I/0
Sort-Merge
Report Writer
Segmentation

· Librarv
Debug

Inter-program Communication
Communication

Implementation

Level 2.
Level 1+.
Level 2.
Level 2.
Level 2.
Null.
Null.
Level 1.
Level 1.
N/S. Conditional compile and
execution time interactive debugger.
Level 1.
Modified ACCEPT and DISPLAY for
terminal communication.

ANSI COBOL X3.23 1974

--~---~----------~-~-~------FEDERAL INFORMATION 1
PROCESSING STANDARD <FIPS) l

MODULE
I _, _____ .,.. ___ ..,,_ ___________________________ .,.. ________ I

I I HIOH I LOW 1 RM
I HIGH I INTERMEDIATE t INTERMEDIATE I LOW ICOBOLI I I I 1---------.... --------1 -------~-: ________ ... _______ .,;,,.t,, ________ .;__ ____ .:.., _____ , ____ , -------1

NUCLEUS I 2 2 1 I 1 I 2 I

TABLE HANDLING I 2 2 1 I 1 f 1+ I
I I

SEGUENTIAl.. l/0 I 2 2 1 I 1 2
RELATIVE l/0 I 2 2 1 I 2
INDEXED I/0 2 I I 2
SORT-MEROE ·2 1 t:' ~ t

I

REPORT WRITER I
SEOMENTATlON 2 1 1 I 1
LIBRARY 2 1 1 I 1
DEBUG 2 2 1 I N/S
INT!R-PROORAN r

CONNUNICATION 2 2 1 I 1+
COMMUNICATION 2 2 N/S

------~----~-----------------------------~----------~-----~~----------
N/S • Nonstandard

PAOE 2W

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus <2 NUC):

- Data description includes a USAQE t1pe of CONPUTATIONAL-1 o-r
CONP-1 for desc-ribing single word two's coapleaent signed
binar, data <nonstandard>.

- Data description includes a USAOE t1pe of CONPUTATION~-3 o-r
CONP-3 for describing packed deciaal data <nonstanda-rd). ·

- The ACCEPT stateaent allows multiple operands <nonstandard).

- The ACCEPT stateaent includes syntax for specifving CRT
control infloraation <nonstandaT'd >.

- The DISPLAY statement includes svntax for specifving CRT
control in.foru.:tion <nonstt1tndard).

Level 1 Table Handling (1 TBL>:

- Variable group si1e <OCCURS DEPENDING>.

Level 2 Seq,uttnti.al I-O <2. SEG,):

- The file con't1'ol SELECT clause allows specification of the
exte1'nal file naae as a literal o-r data it•• (non.standard>.

- The READ stateae.n't includes 'the WITH ND LOCK option
<nons tanda-rd >.

- The UNLOCK stateaent is included (~onstan4•-rd>.

Level 2 Relative I-0 (2 REL>:

- The file control SELECT clause a11,ws specification of the
external file na,ne as a literal 01' data itea (nonstanda1'd).

- The READ stateaent includes the WITH NO LOCK option
. <nonstandard>.

- The UNLOCK stateaent is included. (nonstandard>.

Level 2 Indexed I-0 (2 INX>:

- The ,ile control SELECT clause allows speci,ication of the
external file name as a literal or data item (nonstandard).

- The READ statement includes the WITH NO LOCK option
<nonstandard >.

- The UNLOCK statement is included <nonstandard).

Level 1 Debug < 1 DEB>:

An interactive execution time debug facilitu is provided
(nonstandard>.

Level 1 Inter-Program Communication <1 IPC>:

The CALL statement
<nonstandard>.

allows literals in USINQ phrase

- The CALL state1Unt a,Jlow• identifiers in the USINQ plu•ase to
be described with level number 01 through 49 and level
number n <nonstandard>.

- The CALL statement supports specification of a varia~le
p'rogra• name as iilentt,ter-1 (level 2 IPC>.

Level 1 Communication (1 CON>:

ACCEPT and DISPLAY allow specification of c0411Plete screen
format in the Procedure Division <nonstandard).

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus (2 NUC>:

- DATE-CONPILED
Di vi son.

is not supported in the Identification

- In data descT'iption the SIQN claus.e cannot specifv LEADINQ
fo,.. the operational sign;, omission of the SEPARATE phN1se
has no effect; all operational signs are sepaT'»te tf'ailing
characte'rs.

- Alphabet-name IS literal or implementoT'•name aav not be
specified in SPECIAL-NAMES paragraph.

- Multiple results are not sup.ported in arithme'tic statements.

- REMAINDER is not supported in DIVIDE statement.

- A procedure-name is 'req,uired in QO TO •'tat•ntel'f1:s.

- INSPECT data items aT'e T'es,tric,ted to •ing,le· ci\arac tel'.

- Compound TALLYINQ and REPLACINQ clauses in the INSPECT
statement a're not supported.

- When used in the P'rocethJre •Div•isiort,· the nuilJet"ic ·literal in
the ALL form of a figurative constant mav not contain more
than one character.

- Arithmetic expressions
•1:at•unt:s.

mav be used onlv in COttPUTE

- Exponentiation to a noninteger powel' is not supported.

- Sign conditions are not supported.

- AbbT'eviated combined relation conditions are not supported~

- The STRINQ and UNSTRINO statements are not supported.

Level 2 Seq,uential I-0 (2 SEG):

- OPTIONAL and RESERVE mav not be specified in the SELECT
clause.

- RERUN, SANE AREA or MULTIPLE FILE clause,.,.. not suppo'f'ted
In I-0-CONTROL.

- CODE-SET and LINAQE clauses may not be specified in a file
description entry.

- The mnemonic-name and EDP options of the WRITE statement are
not supported.

The REVERSED option of the OPEN statement is not supported.

- The FOR REMOVAL option of the CLOSE statement is not
supported.

Level 2 Relative 1-0 (2 REL>:

The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

The VALUE OF clause in an FD entry must not specify a data
name.

Level 2 Indexed I-0 (2 INX>:

The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

Level 1 Segmentation <1 SEO>:

- All independent segments must physically follow the fixed
permanent segments in the source program.

Level 1 Librarv <1 LIB>:

- A copv sentence must be the last entry in area B of a source
record.

Level 1 Inter-Program·communication <1 IPC>:

A CALLed program is automatically cancelled upon execution
of the EXIT PROQRAN statement.

PAOE 297

J

I•

SOFTWARE REGISTRATION CARD

IMPORTANT: In order that you can receive notification
of modifications or updates of this program you MUST
complete this card and return it immediately. This card
gets you information only and is NOT a warranty
registration.

Name _________________ _
Version/Date

Company _______________ _

Address ________________ _

City _________________ _ Cat. No. 2 2 0 3
State ___________ Zip ____ _ Purchase Date _____ _

CHANGE OF ADDRESS
NOTE: If you move, please fill out this card and return it so that you may continue to
receive information regarding this program.

Purchase Date 3052~51
Version/Date

Cat. No. 2 ~

NEW ADDRESS: OLD ADDRESS:

Name Name

Company Company

Address Address

City

State

City

Zip State Zip

INSTRUCTIONS FOR USE

1. Register one software package per card only.

2. Complete the Software Registration portion of this form and mail it immediately.
The Catalog No. may be found by examining the upper-right corner of your diskette.

3. For convenience a change of address card has been included. Copy all information
from the Registration Card onto it prior to sending the Registration Card.

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76113-2910

Attn: Software Registration

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76113-2910

Attn: Software Registration

PLACE
STAMP
HERE

PLACE

I STAMP
L HERE

IMPORTANT NOTIC"E
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radib Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss·or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interrup
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or
computer programs. .
NOTE: Good data processing procedure dictates that the user test the

program , run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received . Title to the media on which the software is recorded (cassette
and / or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the soUware allows a
backup copy to be made), and shall include Radio .Shack's copyright
notice on all copies of software reproduced in wh<?le or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft
ware (modified or not , in whole or in part) , provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License (paragraphs A , B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

RADIO SHACK MA DIVISION OF TANDY GORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA
280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

TANDY CORPORATION

BELGIUM
PARC INDUSTRIEL DE NANINNE

5140 NANINNE

U.K.
HILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

.L

*

* *
* ALL USERS MODELS I/III *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

===
Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES ·ro READ
NUMBER
------- --
26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7

MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

26-1149 MODEL I version page 1, 3, 4, 5, 6, and 8
MODEL III version page 2, 8

------- --

8759170

*

* *
* MODEL I USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

UPGRADE UTILITY ON TRSDOS 2.3B
---------------------==
The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

UPGRADE:

TRSDOS 2.1, 2.2, and 2.3.
TRSDOS 2.3B.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.
A program contained on the TRSDOS 2.3B
diskette.

1 of 8

*
* k

* MODEL III USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

XFERSYS UTILITY ON TRSDOS 1.3
===
The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.
===

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
g1v1ng a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

XFERSYS:

TRSDOS 1.1 and 1.2.
TRSDOS 1.3.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is

- used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen·
will clear and "Not a SYSTEM Disk" will be
displayed.
A program contained on the TRSDOS 1.3
diskette.

2 of 8

TO: owners of the Communications Package, Series I Editor
Assembler, BASIC Compiler, BASIC Runtime, COBOL
Compiler, and COBOL Runtime.

FROM: Radio Shack Computer Merchandising

DATE: August 18, 1981

RE: TRSDOS 2.38 for the MODEL I

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. variable length records have been corrected, in all
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.

4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH 'filespec' {ADD=aaaa,FIND=bb,CHG=cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find
and change. You can specify the contents of
more than one byte.

'cc' - the new contents to replace 'bb'

For example:
PATCH DUMMY/CMD {ADD=4567,FIND=CD3300,CHG=CD3B00)

changes CD3300, which resides at memory location 4567
(HEX) in the file namea DUMMY/CMD, to CD3B00.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at
a time. For example:

PATCH DUMMY/CMD {ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

TAPE {S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the

3 of 8

'source device' and 'destination device' using these
abbreviations:

T - Tape
D - Disk
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

5. These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:
COPY FILEl:0 to FILE3:0

duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE!
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.

PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS
Filename
JOBFILE/BLD
TERMINAL/Vl
LOADX/CMD
*** 171 Free

Attrb
N*X0
N*X0
N*X0

Granules

Drive: 0
LRL #Rec
256 1
256 5
256 5

04/15/81
#Grn #Ext

1 1
2 1
2 1

EOF
1

126
0

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

4 of 8

a. the first character is either I (Invisible file)
or N (Non-invisable file)

b. the second character is S (System file) or*
(User file)

c. the third character is the password protection
status of the file:

X - the file is unprotected (no password)
A - the file has an access word but no

update word
U - the file has an update word but no

access word
B - the file has both update and access

word
d. the fourth character specifies the level of

access assigned to the access word:
0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

5 of 8

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
ut{lity then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
1rRSDOS 2. 38 DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

·rhis means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.38 format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.38 error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
File (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE
TRSDOS 2. 1, 2. 2, 2. 3

FILEl EOF=9 10 RECORDS
FILE2 EOF=0 10 RECORDS

AFTER UPGRADE
TRSDOS 2.38

9 RECORDS
10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYSl/SYS
SYS3/SYS SYS4/SYS
SYS6/SYS FORMAT/CMD
BASICR/CMD BASIC/CMD

6 of 8

SYS2/SYS
SYS5/SYS
BACKUP/CMD

, SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

==-----
The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

===
TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B

ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC interpreter,
follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive O and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIF'r/CMD: 0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive O and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X'7D00')

Reference Section 4 of your manual and note that X'7000'
is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

7 of 8

* * * * * * * * * * * * * * *
* *
* IMPORTANT NOTICE *
* FOR *
* COMMUNICATIONS PACKAGE *
* DISK SYSTEM USERS *
* *
* * * * * * * * * * * * * * *

The 26-1149 Communications Package is delivered on MODEL I
TRSDOS 2.3B and Model III TRSDOS 1.3. Communication can
occur MODEL I to I, III to III, or I to III, but only under
MODEL I TRSDOS 2.3B and MODEL III TRSDOS 1.3.

Data on MODEL I TRSDOS 2.1, 2.2, or 2.3 must be UPGRADEd to
2.3B beofre it can be transmitted. Backup the diskette
before UPGRADEING.

Data on MODEL III TRSDOS 1.1 and 1.2 must be XFERSYSed to
1.3 before it can be transmitted. Backup the diskette
before XFERSYSing.

NOTE: Radio Shack Application programs on TRSDOS 1.1, 1.2,
2.1, 2.2, or 2.3 were tested on the particular
version of TRSDOS they were purchased on.

No guarantee is implied that these programs will
work correctly after being UPDATEd to MODEL I TRSDOS
2.3B or XFERSYSed to MODEL III TRSDOS 1.3.

IMPORTANT NOTE FOR MODEL I USERS: You cannot run BASIC
programs because TRSDOS 2.3 does not contain DISK BASIC.

On page 20 of the Communications Package manual, we suggest
you use SAVE, a DISK BASIC command, to save a transferred
BASIC tape program on diskette. You will not be able to use
the SAVE command with the TRSDOS 2.3B diskette, since it
does not contain DISK BASIC.

8 of 8

Addendum to the
Communications Package Manual

Catalog Number 26-1149

Please make these corrections to your Communications Package
manual:

1. Page 16: Change <SHIFT> <X> to <SHIFT> <down
arrow> <X>. In the next sentence, change <SHIFT>
<down arrow> to <SHIFT> <up arrow>.

2. Page 32: Memory location 16889 should be set to
108 rather than 104.

3. Page 35: Please note that the control function
does not work on some of the early Model III's. You
will have to press RESET to exit the TERM program
and ·return to BASIC or TRSDOS.

If you have a Model III, please note the following regarding
how to transfer tape data files (described in the manual on
pages 22 and 23):

COMPROG will prompt you and your friend with Cass?
before each block (portion) of data is transferred.
Both of you must specify the baud rate in response
to each of these prompts.

BASIC data files may only be transmitted at a low
baud rate. Therefore, when transmitting a BASIC
data file, you must respond to all the Cass? prompts
with L. If you will be writing a program to read
the file, you must specify the low baud rate before
running the program.

We suggest that you use only a tape which contains
a single data file. (If you have more than one
data file on a tape, you will have to manually stop
the tape recorder after the file is transmitted.
Otherwise, COMPROG will continue transferring all
the data on the tape.>

Note for Tape System Customers:

If you exit one of the communications programs, you can
return to it with the SYSTEM command (providing the program
in memory has not been over-written). Type SYSTEM <ENTER>.
In response to the*? prompt, type/ followed by the
program's transfer address .

For the HOST and TERM pr ograms, the transfer address is the
Memory Size address (listed on page 8) plus one. For the
COMPROG program, the transfer address is 46357 on a 32K
system, or 62741 on a 48K system.

Thank You!
Radio Shack

A Division of Tandy Corporation
875-9141

